Since the question of the value of the sum has already been addressed, let me tackle the question about the convergence.
Lemma. For any $a \in \mathbb{C} \setminus\{0,-1,-2,\ldots\}$,
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k+a}
= \sum_{n=0}^{\infty} \frac{n!}{2^{n+1}a(a+1)\cdots(a+n)}.$$
Also, for any given positive integer $N$, there exist constants $c_0, \ldots, c_{N-1}$ such
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k+a}
= \sum_{n=0}^{N-1} \frac{c_n}{a+n} + \mathcal{O}(a^{-N-1}) $$
as $\operatorname{Re}(a) \to \infty$.
I think this can be directly obtained by the Euler's series acceleration, although a direct proof is available (see below). Repeatedly applying this lemma then proves that OP's series converges.
Proof of Lemma. Assume first that $\operatorname{Re}(a) > 0$. For a given positive integer $K$,
$$
\begin{align*}
\sum_{k=0}^{K-1} \frac{(-1)^k}{k+a}
&= \sum_{k=0}^{K-1} (-1)^k \int_{0}^{1} x^{k+a-1} \, \mathrm{d}x \\
&= \int_{0}^{1} \sum_{k=0}^{K-1} (-1)^k x^{k+a-1} \, \mathrm{d}x \\
&= \int_{0}^{1} \frac{1 - (-x)^K}{1 + x} x^{a-1} \, \mathrm{d}x \\
&\to \int_{0}^{1} \frac{x^{a-1}}{1 + x} \, \mathrm{d}x
\end{align*}
$$
as $K \to \infty$ by the dominated convergence theorem. Now, by performing integration by parts, we get
$$
\begin{align*}
\int_{0}^{1} \frac{x^{a-1}}{1 + x} \, \mathrm{d}x
&= \left[ \frac{x^a}{a(x+1)} \right]_{0}^{1} + \frac{1}{a} \int_{0}^{1} \frac{x^{a}}{(x+1)^2} \, \mathrm{d}x \\
&= \frac{1}{2a} + \frac{1}{2^2 a(a+1)}
+ \frac{2!}{a(a+1)} \int_{0}^{1} \frac{x^{a+1}}{(x+1)^3} \, \mathrm{d}x \\
&\qquad \vdots \\
&= \sum_{n=0}^{N-1} \frac{n!}{2^{n+1}a(a+1)\cdots(a+n)}
+ \frac{N!}{a(a+1)\cdots(a+N-1)} \int_{0}^{1} \frac{x^{a+N-1}}{(x+1)^N} \, \mathrm{d}x \tag{*}
\end{align*}
$$
Since the factor $\frac{N!}{a(a+1)\cdots(a+N-1)}$ grow at most polynomially fast and $0 \leq \frac{x}{x+1} \leq \frac{1}{2}$ for $0 \leq x \leq 1$, the remainder term converges to $0$ as $N \to \infty$, proving the first assertion of the lemma when $\operatorname{Re}(a) > 0$. The general case then easily follows from the principle of analytic continuation.
The second assertion also easily follows from the formula $\text{(*)}$, first expanding the summation part using the partial fraction decomposition and then noting that the remainder term decays at least as fast as $a^{-N}$ as $\operatorname{Re}(a) \to \infty$ for each fixed $N$.