Quick disclaimer, I have never taken a calculus course so this is all based off of very informal understanding.
This is the target integral
$$
I=\int_0^{\infty}\frac{\ln^2\left(x\right)}{\left(x^2+1\right)\left(x^2+4\right)\left(x^2+9\right)\left(x^2+16\right)}dx
$$
I thought I could use some form of Feynman's technique so I started with this integral
$$
I\left(t\right)=\int_0^{\infty}\frac{x^t}{\left(x^2+1\right)\left(x^2+4\right)\left(x^2+9\right)\left(x^2+16\right)}dx
$$
Differentiating twice would introduce the $\ln^2\left(x\right)$ I needed
$$
I=I\ ''\left(0\right)
$$
$$ I\left(t\right)=\int_0^{\infty}x^t\left(\frac{\left(Ax+B\right)}{x^2+1}+\frac{\left(Cx+D\right)}{x^2+4}+\frac{\left(Ex+F\right)}{x^2+9}+\frac{\left(Gx+H\right)}{x^2+16}\right)dx $$
$$ I\left(t\right)=\int_0^{\infty}x^t\left(\frac{\frac{1}{360}}{x^2+1}-\frac{\frac{1}{180}}{x^2+4}+\frac{\frac{1}{280}}{x^2+9}-\frac{\frac{1}{1260}}{x^2+16}\right)dx $$ After a partial fraction decomposition i had 4 similar integrals so i made a generalized function L using a as an input $$ L\left(a\right)=\int_0^{\infty}\frac{x^t}{x^2+a^2}dx=a^{t-1}\int_0^{\infty}\frac{x^t}{x^2+1}dx $$
$$ I\left(t\right)=\frac{L\left(1\right)}{360}-\frac{L\left(2\right)}{180}+\frac{L\left(3\right)}{280}-\frac{L\left(4\right)}{1260} $$ This is where i get a little unsure since i dont know if some of this is allowed but i do partial fraction and solve for A by letting x=i. I then equate A+B to $0$ so assuming t$\ne$1, A=-B $$ L\left(a\right)=a^{t-1}\int_0^{\infty}\left(\frac{A}{x-i}+\frac{B}{x+i}\right)dx$$
$$ \left(x+i\right)A+\left(x-i\right)B=x^t $$ $$ 2iA=i^t\ \ \Longrightarrow\ A=\frac{i^t}{2i}\ \Longrightarrow\ \ B=-\frac{i^t}{2i} $$
$$ L\left(a\right)=a^{t-1}\cdot\frac{i^t}{2i}\int_0^{\infty}\left(\frac{1}{x-i}-\frac{1}{x+i}\right)dx $$ I then recombine the fractions and evaluate the integral $$ L\left(a\right)=a^{t-1}\cdot i^t\int_0^{\infty}\frac{1}{x^2+1}dx=a^{t-1}\cdot i^t\left(\arctan\left(\infty\right)-\arctan\left(0\right)\right) $$
$$ L\left(a\right)=\frac{\pi}{2}a^{t-1}i^t $$ I plug L back into my function I(t) then differentiate twice $$ I\left(t\right)=\frac{\pi i^t}{720}-\frac{\pi\left(2i\right)^t}{720}+\frac{\pi\left(3i\right)^t}{1680}-\frac{\pi\left(4i\right)^t}{10080}=\frac{\pi}{10080}\left(14i^t-14\left(2i\right)^t+6\left(3i\right)^t-\left(4i\right)^t\right) $$
$$ I'\left(t\right)=\frac{\pi}{10080}\left(14i^t\ln\left(i\right)-14\left(2i\right)^t\ln\left(2i\right)+6\left(3i\right)^t\ln\left(3i\right)-\left(4i\right)^t\ln\left(4i\right)\right) $$
$$ I''\left(t\right)=\frac{\pi}{10080}\left(14i^t\ln^2\left(i\right)-14\left(2i\right)^t\ln^2\left(2i\right)+6\left(3i\right)^t\ln^2\left(3i\right)-\left(4i\right)^t\ln^2\left(4i\right)\right) $$ We can now evaluate at zero $$ I''\left(0\right)=\frac{\pi}{10080}\left(14\ln^2\left(i\right)-14\ln^2\left(2i\right)+6\ln^2\left(3i\right)-\ln^2\left(4i\right)\right) $$
$$ \ln^2\left(ki\right)=\ln^2\left(i\right)+2\ln\left(k\right)\ln\left(i\right)+\ln^2\left(k\right)=-\frac{\pi^2}{4}+i\pi\ln\left(k\right)+\ln^2\left(k\right) $$
$$ I''\left(0\right)=\frac{\pi\left(4\left(-\frac{\pi^2}{4}+i\pi\right)-14\left(-\frac{\pi^2}{4}+i\pi\ln\left(2\right)+\ln^2\left(2\right)\right)+6\left(-\frac{\pi^2}{4}+i\pi\ln\left(3\right)+\ln^2\left(3\right)\right)-\left(-\frac{\pi^2}{4}+i\pi\ln\left(4\right)+\ln^2\left(4\right)\right)\right)}{10080} $$
$$ I''\left(0\right)=\frac{56i\pi^2-64i\pi^2\ln\left(2\right)-72\pi\ln^2\left(2\right)-5\pi^3+24i\pi^2\ln\left(3\right)+24\pi\ln^2\left(3\right)}{10080\cdot4} $$
This answer is not right. Where did I go wrong?