Solve $ y'' + \lambda y^2 = 0$
Attempt 1 : if $\lambda =0 $ .then it's trivial to solve.
If $ \lambda <0 $ ,then $y '' \ge 0$
In particular when $y '' > 0 $ for some interval . Let $ y''= e^{u(x)}$
Then $y(x) =\frac {e^{\frac{u(x)}2}}{\sqrt{-\lambda}} $
Again differentiating this and substituting back leads to another non-linear differential equation .
Attempt 2 : Let $y' = u$
Then $\frac{du}{dx} = \frac{d^2y}{dx^2} = -\lambda y^2 $
or , $ \frac{du}{dy} \frac{dy}{dx} = -\lambda y^2 $
or , $ u du= -\lambda y^2 dy $
Integrating both sides,
$\frac{u^2}2 = -\lambda \frac{y^3}3 +c/2 $
or $u= \sqrt{-\frac 23 \lambda y^3 +c }$
or , $ \frac {dy}{ \sqrt{-\frac 23 \lambda y^3 +c} }=dx$ , (For appropriate values of $\lambda$ and c)
The left integral is definitely not simple looking . How may I proceed ? (I don't think we have to take the help of numerical methods)