$\def\ed{\stackrel{\text{def}}{=}}$
As Ben Grossman surmises, the ideas in his proof can be used to obtain more general results. Here's a generalisation to the case when the characteristic polynomial of $\ A\ $ merely splits in $\ K\ ,$ and isn't restricted to being just an integral power of the indeterminate, as it is in his proof. It certainly doesn't make the result "easily seen", and I haven't been able to extend the proof to the case where not all of the roots of $\ A\text{'s}\ $ characteristic polynomial lie in $\ K\ .$ I'm guessing the ability to see the result "easily" might depend on some special knowledge of the properties of Frobenius normal forms and companion matrices which I don't possess.
My proof is based on the following observations:
- Matrices with the same Jordan normal form are similar.
- If $\ f(x)=\prod_\limits{i=1}^r\big(x-\rho_i\big)^{m_i}\ ,$ with $\
\rho_i\ne \rho_j\ $ for $\ i\ne j\ ,$ then a Jordan normal form for $\ C_f\ $ is
$$
\mathfrak{J}_{C_f}\ed\pmatrix{J_{m_1}\big(\rho_1\big)&0_{m_1\times m_1}&\dots&0_{m_1\times m_1}\\
0_{m_2\times m_2}&J_{m_2}\big(\rho_2\big)&\dots&0_{m_2\times m_2}\\
\vdots&&\ddots&\vdots\\
0_{m_r\times m_r}&0_{m_r\times m_r}&\dots&J_{m_r}\big(\rho_r\big)}\tag{1}\label{e1}
$$
where
$$
J_k(\lambda)\ed\pmatrix{\lambda&1&0&&\dots&0&0\\
0&\lambda&1&&\dots&0&0\\
0&0&\lambda&&\dots&0&0\\
\vdots&\vdots&&\ddots&\ddots&\vdots&\vdots\\
0&0&0&\dots&\dots&\lambda&1\\
0&0&0&\dots&\dots&0&\lambda}
$$
is a $\ k\times k\ $ Jordan block with main diagonal entries $\ \lambda\ .$
- If $\ p\ $ is a polynomial, then\begin{align}p\big(J_k(\lambda)\big)&=\pmatrix{p(\lambda)&p'(\lambda)&p''(\lambda)&\dots&p^{(k-2)}(\lambda)&p^{(k-1)}(\lambda)\\
0&p(\lambda)&p'(\lambda)&\dots&p^{(k-3)}(\lambda)&p^{(k-2)}(\lambda)\\
0&0&p(\lambda)&\dots&p^{(k-4)}(\lambda)&p^{(k-3)}(\lambda)\\
\vdots&\vdots&&\ddots&&\vdots\\
0&0&0&\dots&p(\lambda)&p'(\lambda)\\
0&0&0&\dots&0&p(\lambda)}\\
&=p(\lambda)I_{k\times k}+\ \sum_{i=1}^k\sum_{j=i+1}^{k-1}p^{(j-i)}(\lambda)e_ie_j^T ,\tag{2}\label{e2}\end{align}where $\ e_i\ $ is the $\ i^\text{th}\ $ column of the $\ k\times k\ $ identity matrix $\ I_{k\times k}\ .$That is, $\ p\big(J_k(\lambda)\big)\ $ is a $\ k\times k\ $ upper triangular matrix with entry $\ p^{(j-i)}(\lambda)\ $ in row $\ i\ $ and column $\ j\ $ for $\ 1\le i\le j\le k\ .$
- If \begin{align}
B&=\pmatrix{b_0&b_1&b_2&\dots&b_{k-2}&b_{k-1}\\
0&b_0&b_1&\dots&b_{k-3}&b_{k-2}\\
0&0&b_0&\dots&b_{k-4}&b_{k-3}\\
\vdots&\vdots&&\ddots&&\vdots\\
0&0&0&\dots&b_0&b_1\\
0&0&0&\dots&0&b_0}\\
&=b_0I_{k\times k}+\ \sum_{i=1}^k\sum_{j=i+1}^{k-1}b_{j-i}e_ie_j^T\tag{3}\label{e3}\end{align}—that is, $\ B\ $ is a $\ k\times k\ $ upper triangular matrix with entry $\ b_{j-i}\ $ in row $\ i\ $ and column $\ j\ $ for $\ 1\le i\le j\le k\ $—and $\ b_1\ne0\ ,$ then $\ B\ $
has Jordan normal form $\ J_k\big(b_0\big)\ .$
The first two of the above observations are well known. For all I know, the other two might also qualify for that description, but if I've ever come across them before I'd long forgotten that encounter, and I had to (re?)discover and prove them for myself.
The idea of the overall proof is to take $\ f=\prod_\limits{i=1}^r\big(x-\rho_i\big)^{m_i}\ ,$ where the Jordan normal form of $\ A\ $ has $\ r\ $ blocks, $\ J_{m_1}(\lambda_1),$$\,J_{m_2}(\lambda_2),$$\,\dots,$$\,J_{m_r}(\lambda_r)\ ,$ and $\ \rho_1,\rho_2,\dots,\rho_r\ $ are any $\ r\ $ distinct elements of $\ K\ .$ This is the only part of the proof where the infinite cardinality of $\ K\ $ is invoked, and it would obviously be sufficient for $\ K\ $ to have cardinality at least $\ r\ $. Next, take $\ g\ $ to be a polynomial which satisfies the conditions
\begin{align}
g\big(\rho_i\big)&=\lambda_i\ \ \text{ and }\\
g'(\rho_i\big)&=1\tag{4}\label{e4}
\end{align}
for $\ 1\le i\le r\ .$ I give an explicit construction of such a polynomial below. The Jordan normal form of $\ C_f\ $ is given by the expression \eqref{e1}. Therefore, there exist an invertible matrix $\ W\ $ such that
$$
W^{-1}C_fW=\mathfrak{J}_{C_f}\ ,
$$
and then
\begin{align}
W^{-1}g\big(C_f)W&=g\big(W^{-1}C_fW\big)\\
&=g\big(\mathfrak{J}_{C_f}\big)\\
&=\pmatrix{g\big(J_{m_1}\big(\rho_1\big)\big)&0_{m_1\times m_1}&\dots&0_{m_1\times m_1}\\
0_{m_2\times m_2}&g\big(J_{m_2}\big(\rho_2\big)\big)&\dots&0_{m_2\times m_2}\\
\vdots&&\ddots&\vdots\\
0_{m_r\times m_r}&0_{m_r\times m_r}&\dots&g\big(J_{m_r}\big(\rho_r\big)\big)}\\
&=\pmatrix{G_1&0_{m_1\times m_1}&\dots&0_{m_1\times m_1}\\
0_{m_2\times m_2}&G_2&\dots&0_{m_2\times m_2}\\
\vdots&&\ddots&\vdots\\
0_{m_r\times m_r}&0_{m_r\times m_r}&\dots&G_r}\ ,
\end{align}
where
\begin{align}
G_i&\ed\pmatrix{g\big(\rho_i\big)&g'\big(\rho_i\big)&g''\big(\rho_i\big)&\dots&g^{(m_i-2)}\big(\rho_i\big)&g^{(m_i-1)}\big(\rho_i\big)\\
0&g\big(\rho_i\big)&g'\big(\rho_i\big)&\dots&g^{(m_i-3)}\big(\rho_i\big)&g^{(m_i-2)}\big(\rho_i\big)\\
0&0&g\big(\rho_i\big)&\dots&g^{(m_i-4)}\big(\rho_i\big)&g^{(m_i-3)}\big(\rho_i\big)\\
\vdots&\vdots&&\ddots&&\vdots\\
0&0&0&\dots&g\big(\rho_i\big)&g'\big(\rho_i\big)\\
0&0&0&\dots&0&g\big(\rho_i\big)}\\
&=\pmatrix{\lambda_i&1&g''\big(\rho_i\big)&\dots&g^{(m_i-2)}\big(\rho_i\big)&g^{(m_i-1)}\big(\rho_i\big)\\
0&\lambda_i&1&\dots&g^{(m_i-3)}\big(\rho_i\big)&g^{(m_i-2)}\big(\rho_i\big)\\
0&0&\lambda_i&\dots&g^{(m_i-4)}\big(\rho_i\big)&g^{(m_i-3)}\big(\rho_i\big)\\
\vdots&\vdots&&\ddots&&\vdots\\
0&0&0&\dots&\lambda_i&1\\
0&0&0&\dots&0&\lambda_i}\ ,
\end{align}
by virtue of observation \eqref{e2} and the properties \eqref{e4} of $\ g\ .$ Now by observation \eqref{e3}, $\ G_i\ $ has Jordan normal form $\ J_{m_i}\big(\lambda_i\big)\ ,$ so there exists an invertible $\ m_i\times m_i\ $ matrix $\ U_i\ $ such that $\ U_i^{-1}G_iU_i=J_{m_i}\big(\lambda_i\big)\ .$ If we now define
$$
U\ed\pmatrix{U_1&0_{m_1\times m_1}&\dots&0_{m_1\times m_1}\\
0_{m_2\times m_2}&U_2&\dots&0_{m_2\times m_2}\\
\vdots&&\ddots&\vdots\\
0_{m_r\times m_r}&0_{m_r\times m_r}&\dots&U_r}
$$
then we have
\begin{align}
U^{-1}W^{-1}g\big(C_f)WU&=\pmatrix{U_1^{-1}G_1U_1&0_{m_1\times m_1}&\dots&0_{m_1\times m_1}\\
0_{m_2\times m_2}& U_2^{-1}G_2U_2&\dots&0_{m_2\times m_2}\\
\vdots&&\ddots&\vdots\\
0_{m_r\times m_r}&0_{m_r\times m_r}&\dots& U_r^{-1}G_rU_r}\\
&=\pmatrix{J_{m_1}\big(\lambda_1\big)&0_{m_1\times m_1}&\dots&0_{m_1\times m_1}\\
0_{m_2\times m_2}&J_{m_2}\big(\lambda_2\big)&\dots&0_{m_2\times m_2}\\
\vdots&&\ddots&\vdots\\
0_{m_r\times m_r}&0_{m_r\times m_r}&\dots&J_{m_r}\big(\lambda_r\big)}
\end{align}
which is the Jordan normal form of $\ A\ .$ Thus, it is also a Jordan normal form for $\ g\big(C_f\big)\ $ which must therefore be similar to $\ A\ .$
Here's the construction of $\ g\ $ promised above. Define
\begin{align}
h_1(x)&\ed\sum_{i=1}^r\frac{\lambda_i\prod_\limits{j=1,j\ne i}^r\big(x-\rho_j\big)}{\prod_\limits{j=1,j\ne i}^r\big(\rho_i-\rho_j\big)}\\
h_2(x)&\ed\sum_{i=1}^r\frac{\big(h_1'\big(\rho_i\big)-1\big)\prod_\limits{j=1,j\ne i}^r\big(x-\rho_j\big)}{\left(\prod_\limits{j=1,j\ne i}^r\big(\rho_i-\rho_j\big)\right)^2}\\
h_3(x)&\ed\prod_{j=1}^r\big(x-\rho_j)\ \ \text{ and}\\
g(x)&\ed h_1(x)-h_2(x)h_3(x)\ .
\end{align}
The first two definitions use the Lagrange interpolation formula to obtain polynomials satisfying
\begin{align}
h_1\big(\rho_i\big)&=\lambda_i\ \ \ \text{ and}\\
h_2\big(\rho_i\big)&=\frac{h_1'\big(\rho_i\big)-1}{\prod_\limits{j=1,j\ne i}^r\big(\rho_i-\rho_j\big)}
\end{align}
for $\ 1\le i\le r\ ,$ and $\ h_3\ $ has the properties
\begin{align}
h_3\big(\rho_i\big)&=0\ \ \ \text{ and}\\
h_3'\big(\rho_i\big)&=\prod_\limits{j=1,j\ne i}^r\big(\rho_i-\rho_j\big)
\end{align}
for $\ 1\le i\le r\ .$ Therefore
\begin{align}
g\big(\rho_i\big)&=h_1\big(\rho_i\big)-h_2\big(\rho_i\big)h_3\big(\rho_i\big)\\
&=h_1\big(\rho_i\big)\\
&=\lambda_i\ \ \ \text{ and}\\
g'\big(\rho_i\big)&=h_1'\big(\rho_i\big)-h_2'\big(\rho_i\big)h_3\big(\rho_i\big)-h_2\big(\rho_i\big)h_3'\big(\rho_i\big)\\
&=h_1'\big(\rho_i\big)-h_2\big(\rho_i\big)h_3'\big(\rho_i\big)\\
&=h_1'\big(\rho_i\big)-\left(\frac{h_1'\big(\rho_i\big)-1}{\prod_\limits{j=1,j\ne i}^r\big(\rho_i-\rho_j\big)}\right)\prod_\limits{j=1,j\ne i}^r\big(\rho_i-\rho_j\big)\\
&=1
\end{align}
for $\ 1\le i\le r\ ,$ as required.
Here's a proof of observation \eqref{e2}. First, note that if $\ \pi_r(x)=x^r\ $ then
\begin{align}
\pi_r\big(J_k(\lambda)\big)&=\left(\lambda I_{k\times k}+\sum_{i=1}^{k-1}e_ie_{i+1}^T\right)^r\\
&=\sum_{\ell=0}^r {r\choose\ell}\left(\sum_{i=1}^{k-1}e_ie_{i+1}^T\right)^\ell\big(\lambda I_{k\times k}\big)^{r-\ell}\\
&=\lambda^rI_{k\times k}+\sum_{\ell=1}^{\min(r,k-1)} {r\choose\ell}\lambda^{r-\ell}\sum_{i=1}^{k-\ell}e_ie_{i+\ell}^T\,^\color{red}{\dagger}\\
&=\lambda^rI_{k\times k}+\sum_{i=1}^{k-1} \sum_{\ell=1}^{\min(r,k-i)}{r\choose\ell}\lambda^{r-\ell}e_ie_{i+\ell}^T\\
&=\lambda^rI_{k\times k}+\sum_{i=1}^{k-1} \sum_{\ell=1}^{k-i}\pi_r^{(\ell)}(\lambda)e_ie_{i+\ell}^T\\
&=\pi_r(\lambda) I_{k\times k}+\sum_{i=1}^{k-1} \sum_{j=i+1}^k\pi_r^{(j-i)}(\lambda)e_ie_j^T\ ,
\end{align}
which establishes the observation for $\ p=\pi_r\ .$ For an arbitrary polynomial, $\ p(\lambda)=\sum_\limits{r=0}^dp_r\lambda^r=\sum_\limits{r=0}^dp_r\pi_r(\lambda)\ ,$ we therefore have
\begin{align}
p(J_k(\lambda)\big)&=\sum_{r=0}^dp_rJ_k(\lambda)^r\\
&=\sum_{r=0}^dp_r\pi_r\big(J_k(\lambda)\big)\\
&=\sum_{r=0}^dp_r\left(\pi_r(\lambda) I_{k\times k}+\sum_{i=1}^{k-1} \sum_{j=i+1}^k\pi_r^{(j-i)}(\lambda)e_ie_j^T\right)\\
&=\left(\sum_{r=0}^dp_r\pi_r(\lambda)\right) I_{k\times k}+\sum_{i=1}^{k-1} \sum_{j=i+1}^k\left(\sum_{r=0}^dp_r\pi_r^{(j-i)}(\lambda)\right)e_ie_j^T\\
&=p(\lambda) I_{k\times k}+\sum_{i=1}^{k-1} \sum_{j=i+1}^kp^{(j-i)}(\lambda)e_ie_j^T\ ,
\end{align}
which establishes the observation for $\ p\ .$
Observation \eqref{e3} follows from the fact that both the characteristic and minimal polynomials of $\ B\ $ are $\ \big(x-b_0\big)^k\ .$ Obviously, $\ \det\big(xI_{k\times k}-B\big)=\big(x-b_0\big)^k\ ,$ and since the minimal polynomial must be a factor of this, it must have the form $\ \big(x-b_0\big)^j\ $ for some $\ j\le k\ .$ But since $\ \big(B-b_0I_{k\times k}\big)^{k-1}=b_1^{k-1}e_1e_k^T\ne0\ ,$ it follows that the minimal polynomial of $\ B\ $ must also be $\ \big(x-b_0\big)^k\ .$
If the characteristic polynomial $\ c_A\ $ of $\ A\ $ doesn't split in $\ A\ ,$ the proof will still obviously work with $\ K\ $ replaced by the splitting field, $\ K_{c_A}\ ,$ of $\ c_A\ ,$ but without some extra work, you'll only get similarity over $\ K_{c_A}\ ,$ not necessarily over $\ K\ ,$ and it's not clear that you can choose both polynomials $\ f\ $ and $\ g\ $ to lie in $\ K[x]\ $ rather than $\ K_{c_A}[x]\ .$ It's not hard to choose $\ f\ $ to be in $\ K[x]\ ,$ but I haven't been able to show that you can do the same with $\ g\ .$ Doing that would be sufficient to prove the general case, because if $\ f,g\in K[x]\ ,$ then the entries in the matrices $\ C_f,g\big(C_f\big)\ $ and the Frobenius normal form of $\ g\big(C_f\big)\ $ would all lie in $\ K\ .$ Since $\ A\ $ and $\ g\big(C_f\big)\ $ (hypothetically) have the same Jordan normal form, then they must also have the same Frobenius normal form, and since they're similar over $\ K\ $ to their Frobenius normal forms, they would also have to be similar to each other over $\ K\ .$
$\,^\color{red}{\dagger}$ Using the identity
$$
\left(\sum_{i=1}^{k-1}e_ie_{i+1}^T\right)^\ell=\cases{\sum_\limits{i=1}^{k-
\ell}e_ie_{i+\ell}&if $\ \ell\le k-1$\\
0_{k\times k}&if $\ \ell\ge k$}
$$
which is easily established by induction.