Pointing at this question, let's prove the following
Lemma. Let $(u_n)_{n\in\mathbb{N}}$ be an increasing sequence such that
$$u_n \to \infty, n\to\infty\tag{1}$$
and
$$u_{n+1}-u_n \to 0,n\to\infty\tag{2}$$
Then $\left\{u_n-\lfloor u_n \rfloor : n\in \mathbb Z^+ \right\}$ is dense in $[0,1]$
Let's establish one important property, from $(2)$ and the fact that $(u_n)_{n\in\mathbb{N}}$ is increasing, $\forall \varepsilon>0$ $\exists N_{\varepsilon}\in \mathbb{N}$:
$$u_n<u_{n+1}<u_n +\varepsilon \tag{3}$$
for $\forall n>N_{\varepsilon}$.
We need to show that $\forall a,b$ real numbers s.t. $0 < a < b <1$ there $\exists u_n$ from the sequence s.t. $a<\{u_n\}<b$, where $\{\}$ is the fractional part.
Proof by contradiction. Assume $(u_n)_{n\in\mathbb{N}}$ is not dense in $[0,1]$, which means there $\exists a,b$ real numbers s.t. $0 < a < b <1$ s.t. for $\forall n\in\mathbb{N}$:
- $0\le\{u_n\} \le a$ or
- $b\le\{u_n\}$
We have 3 cases to check ...
Case 1. $0\le\{u_n\} \le a$ for $\forall n > N_{\varepsilon}$.
From $(3)$
$$u_n<u_{n+1}<u_n +\varepsilon =
\left \lfloor u_n\right \rfloor +\left\{u_n\right\}+\varepsilon \le
\left \lfloor u_n\right \rfloor +a+\varepsilon \Rightarrow \\
0 < u_{n+1} - \left \lfloor u_n\right \rfloor < a+\varepsilon$$
Now $0<a<1$ and we can "adjust" $\varepsilon$ s.t. $a+\varepsilon <1$ leading to
$$0 < u_{n+1} - \left \lfloor u_n\right \rfloor <1$$
Or, because the sequence is increasing
$$0 \le \left \lfloor u_{n+1}\right \rfloor - \left \lfloor u_n\right \rfloor \le
u_{n+1} - \left \lfloor u_n\right \rfloor <1$$
Leading to $\left \lfloor u_{n+1}\right \rfloor = \left \lfloor u_n\right \rfloor$ for $\forall n > N_{\varepsilon}$. This contradicts the $(1)$ above.
Case 2. $b\le\{u_n\}$ for $\forall n > N_{\varepsilon}$.
From $(3)$ and $b\le\{u_n\} \Rightarrow b\le\{u_{n+1}\}$
$$\left \lfloor u_{n+1}\right \rfloor +b \le
\left \lfloor u_{n+1}\right \rfloor +\left\{u_{n+1}\right\}=u_{n+1} <
u_n + \varepsilon$$
We can "adjust" $\varepsilon$ s.t. $b-\varepsilon >0$, leading to
$$0< b-\varepsilon < u_n - \left \lfloor u_{n+1}\right \rfloor \Rightarrow
\left \lfloor u_{n+1}\right \rfloor < u_n$$
The sequence is increasing, thus
$$0 \le
\left \lfloor u_{n+1}\right \rfloor - \left \lfloor u_n\right \rfloor <
\left\{u_n\right\} < 1$$
Leading to $\left \lfloor u_{n+1}\right \rfloor = \left \lfloor u_n\right \rfloor$ for $\forall n > N_{\varepsilon}$. This contradicts the $(1)$ above.
Case 3. $(u_n)_{n\in\mathbb{N}}$ is alternating between $0\le\{u_n\} \le a$ and $b\le\{u_n\}$ infinitely many times. If it doesn't alternate infinitely many times, then the sequence gets stuck in the case 1 or case 2 from some $n$ onwards.
As such, the sequence has a subsequence $(u_{n_{k}})_{k\in\mathbb{N}}$ s.t.
- $0\le \{u_{n_k}\} \le a$ and
- $b\le \{u_{n_k +1}\}$
From $(3)$ and because the sequence is increasing
$$0<u_{n_{k}+1} -u_{n_k} <\varepsilon \iff \\
0< \left \lfloor u_{n_k +1}\right \rfloor - \left \lfloor u_{n_{k}}\right \rfloor +\{u_{n_{k}+1}\}-\{u_{n_{k}}\}< \varepsilon$$
or
$$0<b-a \le \{u_{n_k +1}\} - \{u_{n_k}\} \le
\left \lfloor u_{n_k +1}\right \rfloor - \left \lfloor u_{n_{k}}\right \rfloor +\{u_{n_{k}+1}\}-\{u_{n_{k}}\}< \varepsilon$$
or
$$0<b-a < \varepsilon$$
This contradicts the fact that $\varepsilon$ can be "adjusted" to be arbitrarily small. Technically, it contradicts $(2)$ above.
This concludes the proof.
Now, let's apply the lemma to the $u_n=\sqrt{n}$
- $(\sqrt{n})_{n\in\mathbb{N}}$ is increasing
- $\sqrt{n} \to\infty, n\to\infty$
- $\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}} \to 0, n\to\infty$
As a result, $\left\{\sqrt{n}-\lfloor \sqrt{n} \rfloor : n\in \mathbb Z^+ \right\}$ is dense in $[0,1]$.