The smallest singular value of $A_d$ is in fact on the order of $\frac1{2\sqrt d}$.
We first compute the inverse:
$$A_d^{-1}=\begin{pmatrix}1\\-1&\sqrt2\\&-\sqrt2&\sqrt3\\&&\ddots&\ddots\\&&&-\sqrt{d-1}&\sqrt d\end{pmatrix}.$$
The smallest singular value of $A_d$ is the reciprocal of the largest of $A_d^{-1}$, which is the operator norm. So, we wish to maximize
$$v_1^2+\sum_{i=2}^d(v_i\sqrt i-v_{i-1}\sqrt{i-1})^2$$
subject to $v_1^2+\cdots+v_d^2=1$. Define $w_i=(-1)^iv_i\sqrt i$, so that we have
$$\sum_{i=1}^d\frac{w_i^2}i=1$$
and wish to maximize
$$f(w)=2w_1^2+2w_2^2+\cdots+2w_{d-1}^2+w_d^2+2w_1w_2+\cdots+2w_{d-1}w_d.$$
If the maximum of $f(w)$ is $\sigma^2$, then $\sigma^{-1}$ is the smallest singular value of $A_d$.
On one hand, the fact that $w_1^2+\cdots+w_d^2\leq d$ gives us the bound
$$f(w)\leq 2(w_1^2+\cdots+w_d^2)+(w_1^2+w_2^2)+\cdots+(w_{d-1}^2+w_d^2)\leq 4d,$$
so $\sigma^2\leq 4d$ and thus $\sigma^{-1}\geq\frac1{2\sqrt d}$. On the other hand, we can choose a parameter $k$ and let $w_d=\cdots=w_{d-k+1}=\mu$ for
$$\mu^2=\frac1{\frac1d+\cdots+\frac1{d-k+1}}.$$
This gives us
$$f(w)=\mu^2(4k-3)=\frac{4k-3}{\frac1d+\cdots+\frac1{d-k+1}}\geq\frac{(4k-3)(d-k)}k.$$
Taking $k$ to grow in such a way that $k=\omega(1)$ and $k=o(d)$ gives that $f(w)=4d(1-o(1))$, and so $\sigma^2\geq 4d(1-o(1))$. This means $\sigma^{-1}\leq \frac{1+o(1)}{2\sqrt d}$.