I'm not sure to see how the integral $$\int_0^{\frac{-\pi}{2}} \frac{(2\pi i + \epsilon e^{i\theta})^4i\epsilon e^{i\theta} d \theta} {e^{2 \pi i + \epsilon e^{i \theta}} - 1}$$ yields a finite value of $-8\pi^5i$
I was following this post to solve a contour integral. After expanding the power and neglected all $\epsilon$ terms with a power of 2 or more. I get $$ \int_0^{\frac{-\pi}{2}} \frac{16 \pi^4 i \epsilon e^{i \theta} d \theta}{e^{2 \pi i + \epsilon e^{i \theta}} - 1}$$
From here I'm not sure if I can apply any other simplification.