I want to calculate the Fourier transform of the function $f(t)$, defined as $f(t)=0$ if $t<0$ and $f(t)=J_{n}(t)$ if $t\ge0$, in which $J_{n}(t)$ is the Bessel function of the first kind. That is, I want to calculate $$F(\omega)=\int_0^\infty J_{n}(t)e^{-i\omega t}dt.$$ As far as I know, I can do it by calculating its Laplace transform and then setting $s=i\omega$. In Laplace transform of the Bessel function of the first kind, it is shown how to calculate it by solving the integral $$F(s)=\int_0^\infty J_n(bt)e^{-st}dt=\frac{1}{i\pi}\int_{\mid z \mid=1}\frac{z^n}{bz^2+2sz-b}dz$$ that has simple poles at $z=-\frac{s}{b}\pm\frac{\sqrt{s^2+b^2}}{b}$. As the OP says, only $z=-\frac{s}{b}+\frac{\sqrt{s^2+b^2}}{b}$ is inside the unit circle.
The thing is: if I set $s=i\omega$, the simple poles are $z=-\frac{i\omega}{b}\pm\frac{\sqrt{b^2-\omega^2}}{b}$, and now both poles are inside the unit circle. That is, if I take the Laplace transform and set $s=i\omega$, I get $$F_{1}(\omega)=\frac{(\sqrt{a^2+b^2}-a)^n}{b^{n}\sqrt{a^2+b^2}}\Big|_{s=i\omega}=\frac{\left(\sqrt{1-\left(\frac{\omega}{b}\right)^2}-i\frac{\omega}{b}\right)^n}{b\sqrt{1-\left(\frac{\omega}{b}\right)^2}}$$ However, if I solve directly the previous integral with $s=i\omega$, I get $$F_{2}(\omega)=\frac{\left(\sqrt{1-\left(\frac{\omega}{b}\right)^2}-i\frac{\omega}{b}\right)^n}{b\sqrt{1-\left(\frac{\omega}{b}\right)^2}}-\frac{\left(-\sqrt{1-\left(\frac{\omega}{b}\right)^2}-i\frac{\omega}{b}\right)^n}{b\sqrt{1-\left(\frac{\omega}{b}\right)^2}}$$ Curiously, the best numerical results I get when I use $F_{1}(\omega)$... So what am I getting wrong? Why should I drop the pole $z=-\frac{i\omega}{b}-\frac{\sqrt{b^2-\omega^2}}{b}$?
Additional info: I use the function $f(t)$ as a filter, that is, I use it to calculate $h(t)=f(t)\ast g(t)$ for a given signal $g(t)$. Although $F_{2}(\omega)$ seems to provide the correct Fourier transform when compared to the FFT of $f(t)$, the convolution is (a lot) inaccurate. However, the convolution is accurate when I use $F_{1}(\omega)$.