Let $a$, $b$, $c$ be the roots of $$x^3 - 6x^2 + 3x + 1 = 0$$ Find all the possible values of $a^2b + b^2c + c^2a$ and hence find $|(a-b)(b-c)(c-a)|$.
My try :
Let $P(x) = x^3-6x^2+3x+1 = (x-a)(x-b)(x-c)$
Then, $\frac{P(x)}{x-a} = (x-b)(x-c) => (a-b)(a-c) = \lim{x → a} \frac{x^3-6x^2+3x+1}{x-a} = 3(a^2-4a+1) = 3(a-(2+√3))(a-(2-√3))$.
Similarly, $(b-a)(b-c) = 3(b^2-4b+1) = 3(b-(2+√3))(b-(2-√3))$ and $(c-a)(c-b) = 3(c^2-4c+1) = 3(c-(2+√3))(c-(2-√3))$ .
Combining them, we get $(a-b)^2(b-c)^2(c-a)^2 = 27P(2+√3)P(2-√3)$.
How to proceed from here ??