Let the operator $T:L^2(0,+\infty )\to L^2(1,+\infty )$ be defined by $$Tf(s)= \int_{s^2}^{\infty }\frac{f(t)}{t}dt$$ To check continuity I decided to find the norm $\| T\| =\text{sup}_{\| f\| =1}\| Tf\| $.
$$\begin{split} \left\| \int_{s^2}^{\infty }\frac{f(t)}{t}dt \right\| & =\left( \int_{1}^{\infty }\left( \left| \int_{s^2}^{\infty }\frac{f(t)}{t}dt) \right| \right)^2 \right)^{1/2}\\ &\overset{\text{Hölder}}{\le} \left( \int_{1}^{\infty }\left(\int_{s^2}^{\infty }\left|f(t)\right|^2dt)\right)^{1/2}\left(\int_{s^2}^{\infty }\left|\frac{1}{t}\right|^2dt) \right)^{1/2}d\mu \right)^{1/2} \\ &\le \left[ \int_{1}^{\infty }\left( \frac{1}{s^2} \right)^{1/2}ds \right]^{1/2}=\infty \end{split}$$
But I can't find a lower bound, can anyone suggest how to find it?