$f$ is an irreducible quartic polynomial in $\Bbb Q[x]$ with Galois group $S_4$.
$a,b,c,d$ are four distinct roots of $f$.
Let $K$ be the splitting field of $f$. Let $\text{Gal}(K/\Bbb Q)=S_4$.
Then $a^2b+b^2c+c^2d+d^2a$ is fixed by $\langle(1234)\rangle$.
So $\Bbb Q[a^2b+b^2c+c^2d+d^2a]\subseteq K^{\langle(1234)\rangle}$
Is it always true that $\Bbb Q[a^2b+b^2c+c^2d+d^2a]=K^{\langle(1234)\rangle}$?
Equivalently, the minimal polynomial of $a^2b+b^2c+c^2d+d^2a$ has degree $6$.
I think it is not always true, but cannot come up with a counterexample.
I verified it for $f=x^4-x+1$. It has Galois group $S_4$.
f = QQbar['x'](x^4-x+1)
roots = [f.roots()[n][0] for n in range(4)]
expr = sum([roots[i]**2*roots[(i+1)%4] for i in range(4)])
expr.minpoly()
$x^{6} + 6 x^{5} + 24 x^{4} + 56 x^{3} + 32 x^{2} - 32 x - 256$ indeed has degree $6$.
I verified it for $f=x^4+2x+2$. It has Galois group $S_4$.
f = QQbar['x'](x^4+2*x+2)
roots = [f.roots()[n][0] for n in range(4)]
expr = sum([roots[i]**2*roots[(i+1)%4] for i in range(4)])
expr.minpoly()
$x^{6} - 12 x^{5} + 96 x^{4} - 448 x^{3} + 1024 x^{2} - 1024 x - 6144$ indeed has degree $6$.
I verified it for $f=x^4 - 6x^2 +2x+2$.
It has four real roots and Galois group $S_4$ (from Finding a quartic polynomial in $\mathbb{Q}[X]$ with four real roots such that Galois group is ${S_4}$.)
f = QQbar['x'](x^4 - 6*x**2 +2*x+2)
roots = [f.roots()[n-1][0] for n in range(4)]
expr = sum([roots[i]**2*roots[(i+1)%4] for i in range(4)])
expr.minpoly()
$x^{6} - 12 x^{5} - 240 x^{4} + 2240 x^{3} + 10240 x^{2} - 59392 x - 20736$ indeed has degree $6$.
I verified it for $x^4−4x^2+x+1$.
It has four real roots and Galois group $S_4$.
f = QQbar['x'](x^4 - 4*x**2 + x + 1)
roots = [f.roots()[n-1][0] for n in range(4)]
expr = sum([roots[i]**2*roots[(i+1)%4] for i in range(4)])
expr.minpoly()
$x^{6} - 6 x^{5} - 72 x^{4} + 328 x^{3} + 896 x^{2} - 2464 x - 640$ indeed has degree $6$.