The problem is given as :-
For a continuous real valued function $\Large f$, defined on $\Large [0,1]$ calculate :- $\Large \underset{n \to \infty}{\lim} \underset{0}{\overset{1}{\int}} \cdots \underset{0}{\overset{1}{\int}} f \Bigg((x_{1} \cdots x_{n})^{\frac1n} \Bigg) dx_{1} \cdots dx_{n}$
I got the idea from here and here about how to proceed to evaluate this integral but got stuck too at several parts of the problem. So here is my approach.
It is clear that $f$ is bounded and continuous and we need to find $\large \underset{n \to \infty}{\lim}\mathbf{\mathbb{E}}\Bigg[f \Bigg((\underset{i=1}{\overset{n}{\Pi}} x_{i})^{\frac1n}\Bigg) \Bigg]$ and $X_{i} \sim U[0,1]$
Now consider $y= \underset{i=1}{\overset{n}{\Pi}}(x_{i})^{\frac1n}\\ \implies \log y= \frac1n \underset{i=1}{\overset{n}{\sum}} \log x_{i}\\ \implies -\log y= - \frac1n \underset{i=1}{\overset{n}{\sum}} \log x_{i} \qquad \longrightarrow (i)$
$X_{i}$'s are identical since $X_{i} \sim U[0,1], \qquad \forall i \in \{1,2, \cdots, n \}$
then each of $-\log X_{i} \sim \exp(1)$
But here is my first doubt:-
$1•$ I'm not sure whether each of $X_{i}$ are independent of each other.
If they are then $ \frac1n \underset{i=1}{\overset{n}{\sum}} - \log x_{i} \longrightarrow 1 \qquad \textit{ by slln. } \\ \implies \frac1n \underset{i=1}{\overset{n}{\sum}} \log x_{i} \longrightarrow -1 \\ \implies (\underset{i=1}{\overset{n}{\Pi}} x_{i})^{\frac1n} \longrightarrow e^{-1} \\ \implies f \Bigg((\underset{i=1}{\overset{n}{\Pi}} x_{i})^{\frac1n}\Bigg) \longrightarrow f(e^{-1}) \\ \implies \mathbf{\mathbb{E}}\Bigg[f \Bigg((\underset{i=1}{\overset{n}{\Pi}} x_{i})^{\frac1n}\Bigg) \Bigg] \longrightarrow \mathbf{\mathbb{E}}\Bigg[f(e^{-1}) \Bigg] \\ \implies \underset{n \to \infty}{\lim}\mathbf{\mathbb{E}}\Bigg[f \Bigg((\underset{i=1}{\overset{n}{\Pi}} x_{i})^{\frac1n}\Bigg) \Bigg] \longrightarrow \underset{n \to \infty}{\lim}\mathbf{\mathbb{E}}\Bigg[f(e^{-1}) \Bigg] \longrightarrow \underset{\text{by dct}}{\underbrace{\mathbb{E}(\underset{n \to \infty}{\lim}f(e^{-1}))}} \longrightarrow \mathbb{E}\underset{\text{since } f \\ \text{ is continuous and bounded}}{\underbrace{(f(\underset{n \to \infty}{\lim}e^{-1}))}} \longrightarrow \mathbf{\mathbb{E}}\Bigg[f(e^{-1}) \Bigg] \\ \implies \underset{n \to \infty}{\lim}\mathbf{\mathbb{E}}\Bigg[f \Bigg((\underset{i=1}{\overset{n}{\Pi}} x_{i})^{\frac1n}\Bigg) \Bigg] \longrightarrow \mathbf{\mathbb{E}}\Bigg[f(e^{-1}) \Bigg] \longrightarrow f(e^{-1}) \qquad \to (ii)$
Now if $f(e^{-1})$ has any specific value $c$ then $\underset{n \to \infty}{\lim}\mathbf{\mathbb{E}}(c) = c$ as we can see in this problem, where the specific nature of $f$ has been given.
So from $(ii)$ my question is :-
$2•$ What is the value of $f(e^{-1})$ ?
$3•$ Also, can we say that a continuous and bounded function of continuous uniform random variable, over the region $[0,1]$ will also be uniform over $[0,1]$?
My second approach
Also from $(i)$ we have,
$- \underset{i=1}{\overset{n}{\sum}} \log X_{i} \sim \gamma(n, 1) $ and $- \frac1n \underset{i=1}{\overset{n}{\sum}} \log X_{i} \sim \gamma(n,n)$
$-\log y= - \frac1n \underset{i=1}{\overset{n}{\sum}} \log x_{i} \\ \implies e^{-\log y}= e^{- \frac1n \underset{i=1}{\overset{n}{\sum}} \log x_{i}} \\ \implies \frac1y = e^{\mathbb{E}{[- \log x_{i}]}} \qquad [ \because - \frac1n \underset{i=1}{\overset{n}{\sum}} \log x_{i} = \mathbb{E}{[- \log x_{i}]} \\ \implies \frac1y = e^{n} \qquad [\because \mathbb{E}{[- \log x_{i}]} = n , \forall i \in \{1,2, \cdots, n\}] \\ \implies y = e^{-n} \\ \implies f(y) = f(e^{-n}) \\ \implies \mathbb{E}(f(y)) = \mathbf{\mathbb{E}}\Bigg[f \Bigg((\underset{i=1}{\overset{n}{\Pi}} x_{i})^{\frac1n}\Bigg) \Bigg] = \mathbb{E}(f(e^{-n})) \qquad \longrightarrow (iii)$
From $(iii)$, here are my other doubts :-
$4•$ What is the value of $f(e^{-n})$ here?
$5•$ Can we say that $\underset{n \to \infty}{\lim} \mathbb{E}(f(y)) = \underset{n \to \infty}{\lim} \mathbf{\mathbb{E}}\Bigg[f \Bigg((\underset{i=1}{\overset{n}{\Pi}} x_{i})^{\frac1n}\Bigg) \Bigg] = \underset{n \to \infty}{\lim} \mathbb{E}(f(e^{-n})) = \underset{\text{by dct}}{\underbrace{\mathbb{E}(\underset{n \to \infty}{\lim}f(e^{-n}))}} = \mathbb{E}\underset{\text{since } f \\ \text{ is continuous and bounded}}{\underbrace{(f(\underset{n \to \infty}{\lim}e^{-n}))}}= \mathbb{E}(f(0))?$
I am not sure what $\mathbb{E}(f(0))$ would be.
But is this approach correct?
Alternatively if we write the integral for $n=1,2, \cdots$ respectively, then we see that the $f$ is continuous, bounded and (looks like) monotonically decreasing (hence bijective). But does it help in evaluating the integral ?
Hence any help or explanation in this regard will be helpful, valuable and much appreciated.