$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{{\displaystyle #1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Lest see some $\ds{\underline{use\!f\!ul\ identities}}$:
$$
\begin{array}{rrcl}
\ds{\LARGE\bullet} & \ds{\nabla^{2}} & \ds{\equiv} & \ds{\nabla\cdot\nabla}
\\[1mm]
\ds{\LARGE\bullet} & \ds{r} & \ds{\equiv} & \ds{\verts{\vec{r}}}
\\[1mm]
\ds{\LARGE\bullet} & \ds{\hat{r}} & \ds{\equiv} & \ds{\vec{r} \over r}
\\[1mm]
\ds{\LARGE\bullet} & \ds{\nabla\on{f}\pars{r}} & \ds{=} & \ds{\on{f}'\pars{r}\,\hat{r}}
\\[1mm]
\ds{\LARGE\bullet} & \ds{\nabla\cdot\bracks{\on{f}\pars{\vec{r}} \vec{\bf A}\pars{\vec{r}}}} & \ds{=} & \ds{\bracks{\nabla\on{f}\pars{\vec{r}}}\cdot\vec{\bf A}\pars{\vec{r}} + \on{f}\pars{\vec{r}}\nabla\cdot\vec{\bf A}\pars{\vec{r}}}
\end{array}
$$
\begin{align}
& -----------------------------
\\ & \mbox{Therefore,}
\\[2mm] & \color{#44f}{\left.\nabla^{2}\pars{1 \over r}\right\vert_{r\ \not=\ 0}} \sr{\rm by\ def.}{=} \nabla\cdot\nabla\pars{1 \over r} =
\nabla\cdot\bracks{\totald{\pars{1/r}}{r}\,\hat{r}}
\\[5mm] = & \
\nabla\cdot\pars{-\,{1 \over r^{2}}\,{\vec{r} \over r}} =
-\nabla\cdot\pars{{1 \over r^{3}}\,\vec{r}}
=
-\bracks{\vec{r}\cdot\nabla\pars{1 \over r^{3}} + {\nabla\cdot\vec{r} \over r^{3}}}
\\[5mm] = & \
-\bracks{\pars{-\,{3\hat{r} \over r^{4}}\cdot\vec{r}} + {3 \over r^{3}}} =
-\bracks{-\,{3 \over r^{3}} + {3 \over r^{3}}} = \bbx{\color{#44f}{\LARGE 0}}
\end{align}
In addition,
\begin{align}
\color{#44f}{\int_{V}\nabla^{2}\pars{1 \over r}\dd^{3}\vec{r}}\ & =\
\overbrace{\int_{V}\nabla\cdot\nabla\pars{1 \over r}\dd^{3}\vec{r} =
\int_{S}\nabla\pars{1 \over r}\cdot\dd\vec{S}}
^{\ds{Gauss's\ Divergence\ Theorem}}
\\[5mm] & = -\int_{S}\overbrace{{\hat{r}\cdot\dd\vec{S} \over r^{2}}}^{\ds{\dd\Omega_{\vec{r}}}} =
\bbx{\color{#44f}{-\,4\pi}} \\ &
\end{align}