I know a couple ways of doing this.
$\vec{ds}=dr\hat{r} + rd\theta \hat{\theta} + dz \hat{k}$
$df = \nabla f \cdot \vec{ds}=\frac{\partial f}{\partial r}dr+\frac{\partial f}{\partial \theta}d\theta + \frac{\partial f}{\partial z}dz\implies \nabla f = \frac{\partial f}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\hat{\theta}+\frac{\partial f}{\partial z} \hat{z}$
$\implies \nabla r = \hat r, \nabla \theta = \frac{1}{r}\hat{\theta}, \nabla z = \hat{z}$
$\vec{E} = E_r\hat{r}+E_\theta \hat \theta + E_z\hat{z}=E_r \nabla r + rE_\theta\hat{\theta}+E_z\nabla z$
$\nabla \cdot (f \vec{B})=\nabla f \cdot \vec{B} +f (\nabla \cdot \vec{B})$
Main Base Form: $\nabla \cdot \vec{E} = \nabla(E_r) \cdot \hat{r} +E_r(\nabla \cdot \hat{r})+\nabla E_\theta \cdot \hat{\theta} + E_\theta (\nabla \cdot \hat{\theta}) + \nabla E_z \cdot \hat{z} + E_z (\nabla \cdot \hat{z})$
$\nabla \cdot \vec{E} = \frac{\partial E_r}{\partial r}+E_r(\nabla \cdot \hat{r}) + \frac{1}{r}\frac{\partial E_\theta}{\partial \theta}+E_\theta(\nabla \cdot \hat{\theta}) + \frac{\partial E_z}{\partial z}+E_z(\nabla \cdot \hat{z})$
Since $\hat{z}$ is a constant vector, $\nabla \cdot \hat{z}=0$.
By definition $\nabla \cdot \hat {r}= \lim_{\Delta V \to 0} \frac{\int \int 1 \cdot rd\theta dz}{\int\int\int rdrd\theta dz}= \frac{1}{r}\frac{\partial}{\partial r}(1\cdot r)=1/r$
$\nabla \cdot \hat{\theta} = \frac{\int \int 1 \cdot dr dz}{\int\int\int rdrd\theta dz}=\frac{1}{r}\frac{\partial }{\partial \theta}(1)=0$
So $\nabla \cdot \vec{E} = \frac{\partial E_r}{\partial r}+\frac{E_r}{r} + \frac{1}{r}\frac{\partial E_\theta}{\partial \theta}+ \frac{\partial E_z}{\partial z}$
Alternatively, the $\lim_{\Delta V \to 0}$ integrals could have been used for the full vector and not just the unit vectors, but its somewhat tedious and mistake prone.
The alternative I provided also readily leads to a curl:
What I refer to as Main Base Form above is essentially the same argument for curls only with cross products instead of dot products. Then there's the vector identity $\nabla \times \nabla f =0$
Main Base Form (curl): $\nabla \times \vec{E} = \nabla(E_r) \times \hat{r} +E_r(\nabla \times \hat{r})+\nabla E_\theta \times \hat{\theta} + E_\theta (\nabla \times \hat{\theta}) + \nabla E_z \times \hat{z} + E_z (\nabla \times \hat{z})$
So $\nabla \times \vec{E} = \nabla E_r \times \nabla r + E_r(\nabla \times \nabla r)+ \nabla E_\theta\times (r\nabla \theta)+E_\theta(\nabla \times (r\nabla \theta))+\nabla E_z \times \hat{z}+E_z(\nabla \times \nabla z) $
$\implies \nabla \times \vec{E} = \nabla E_r \times \nabla r + r \nabla E_\theta \times \nabla \theta + E_\theta \nabla r \times \nabla \theta+ \nabla E_z \times \hat{z}$
But $\nabla r \times \nabla \theta = \hat {r} \times \frac{\hat{\theta}}{r}=\frac{\hat {z}}{r}$
So $\nabla \times \vec{E} = \nabla E_r \times \nabla r + r \nabla E_\theta \times \nabla \theta + \frac{E_\theta \hat{z}}{r}+ \nabla E_z \times \hat{z}$
Most of these lines are just derivation and proof. The Main Base Form is intuitive and memorizing the divergence of the unit vectors fill in the blanks and are easy to memorize since only 1 is non-zero. The curl is even easier.
There is an integral definition of curl often used to derive it. It requires six integral expressions and I always mess up their signs.