Not sure if it helps, but you can derive a recurrence for
$$I_n(a_1,\dots,a_n)=\int_0^\infty\frac{dx}{1+x^2}\prod_{i=1}^n\arctan (a_ix) \, .$$
$I_n$ is symmetric with respect to permutation of its arguments and anti-symmetric in $a_i$ for all $i$. As a function over $\mathbb{C}$ it converges for all complex values $a_i$, since the singularities are integrable. Since $\arctan(x)$ has cuts on $(-i\infty,-i) \cup (i,i\infty)$, $I_n$ will have discontinuities along the imaginary axis with the exception at $a_i=0$ where $I_n$ vanishes and is differentiable off the imaginary axis. In the following we can assume $a_i \in \mathbb{R}^+$ for which $I_n$ is well defined and a continuously increasing function in $a_i$. We can now do the following manipulations
$$I_n(a_1,\dots,a_n)=\int_0^{a_n}dt\int_0^{a_{n-1}} ds \int_0^\infty dx \, \frac{x^2}{(1+x^2)(1+s^2x^2)(1+t^2x^2)} \prod_{i=1}^{n-2}\arctan (a_ix) \\
=\int_0^{a_n}dt\int_0^{a_{n-1}} ds \int_0^\infty dx \prod_{i=1}^{n-2}\arctan (a_ix) \\
\quad \times \left( \frac{s}{(1-s^2)(s^2-t^2)} \frac{s}{1+s^2x^2} + \frac{t}{(1-t^2)(t^2-s^2)} \frac{t}{1+t^2x^2} - \frac{1}{(1-s^2)(1-t^2)} \frac{1}{1+x^2}\right) \\
\stackrel{\substack{u=sx\\v=tx}}{=} \int_0^{a_n}dt\int_0^{a_{n-1}} ds \left( \frac{s}{(1-s^2)(s^2-t^2)} \, I_{n-2}(a_1/s,\dots,a_{n-2}/s) \\
+ \frac{t}{(1-t^2)(t^2-s^2)} \, I_{n-2}(a_1/t,\dots,a_{n-2}/t) - \frac{1}{(1-s^2)(1-t^2)} \, I_{n-2}(a_1,...,a_{n-2})\right) \, .$$
The integrand appears to have singularities, but expanding about $s=t=1$ or $s=t$ it is seen to be continuous. Nevertheless, each individual term does have singularities. Before doing any further manipulations, we can now fix a contour for the $s$- and $t$-integral. We choose the line of integration for the $t$-integral to be slightly above the real axis (in the upper half-plane) and for $s$ to be below the real axis (if necessary). This way the paths of integration do not cross. Because the integrand is continuous, we have the choice of picking an inner integral ($t$) and for that the principal value $PV$ before we break it up into individual terms. Finally we let $a_n \to \infty$
$$I_n(a_1,\dots,a_{n-1},\infty)= \frac{\pi}{2} \, I_{n-1}(a_1,\dots,a_{n-1}) \\
=PV \int_0^{a_{n-1}} ds \int_0^{\infty}dt \left( \frac{s}{(1-s^2)(s^2-t^2)} \, I_{n-2}(a_1/s,\dots,a_{n-2}/s) \\
+ \frac{t}{(1-t^2)(t^2-s^2)} \, I_{n-2}(a_1/t,\dots,a_{n-2}/t) - \frac{1}{(1-s^2)(1-t^2)} \, I_{n-2}(a_1,...,a_{n-2})\right) \\
=\int_0^{a_{n-1}} ds \, PV \int_0^{\infty}dt \, \frac{t}{(1-t^2)(t^2-s^2)} \, I_{n-2}(a_1/t,\dots,a_{n-2}/t) \, .$$
In the last line we broke up the integrand and used the fact that $$PV \int_0^\infty \frac{dt}{s^2-t^2}=0$$
for all $s>0$. Thus (after the shift $n\to n+1$)
$$I_n(a_1,\dots,a_n) = \frac2\pi \int_0^{a_n} ds \, PV \int_0^\infty dt \, \frac{t}{(1-t^2)(t^2-s^2)} \, I_{n-1}(a_1/t,\dots,a_{n-1}/t) \, . \tag{1}$$
This integral is well defined for all $a_n>0$. However, the principal value doesn't allow the naive interchange of the order of integration. This can be remedied by considering again the (complex) line-contour (as above) and adding (+subtracting) back the missing infinitesimal semi-circle (in the upper half-plane) at $t=s$. This gives an additional term by the residue theorem and the principal value now only takes into account the singularity at $t=1$
$$I_n(a_1,\dots,a_n) = \frac2\pi \int_0^{a_n} ds \, PV_{t=1} \int_0^\infty dt \, \frac{t}{(1-t^2)(t^2-s^2)} \, I_{n-1}(a_1/t,\dots,a_{n-1}/t) \\
\qquad \qquad + i \int_0^{a_n} ds \frac{1}{(1-s^2)} \, I_{n-1}(a_1/s,\dots,a_{n-1}/s) \, .$$
The $s$ and $t$ integral can now be interchanged, since there is no discontinuity issue at $s=t$
$$I_n(a_1,\dots,a_n) = \frac2\pi \, PV_{t=1} \int_0^\infty dt \, \frac{1}{(1-t^2)} \, I_{n-1}(a_1/t,\dots,a_{n-1}/t) \left[ PV\int_0^{a_n} ds \, \frac{t}{t^2-s^2} \\
\qquad \qquad - \frac{i\pi}{2} \left[t\in(0,a_n)\right] \right] + i \int_0^{a_n} ds \frac{1}{(1-s^2)} \, I_{n-1}(a_1/s,\dots,a_{n-1}/s) \, .$$
The $s$ integral was splitted into the principal value and the positively oriented infinitesimal semi-circle about $s=t$ evaluated using the residue, which only occurs if $t\in(0,a_n)$. $[\dots]$ is the iversion bracket. The previous expression then becomes
$$I_n(a_1,\dots,a_n)= \frac1\pi \, PV \int_0^\infty dt \, \frac{1}{1-t^2} \, \log\left|\frac{a_n+t}{a_n-t}\right| \, I_{n-1}(a_1/t,\dots,a_{n-1}/t) \\
-i \, PV\int_0^{a_n} \frac{dt}{1-t^2} \, I_{n-1}(a_1/t,\dots,a_{n-1}/t) + i \int_0^{a_n} ds \frac{1}{(1-s^2)} \, I_{n-1}(a_1/s,\dots,a_{n-1}/s) \, .$$
Now remember that the $t$-line-contour was above the real line in the upper complex plane, while $s$ followed a path below the real line. Therefore the second line essentially cancels (i.e. the principal values cancel), except the positively oriented infinitesimal semi-circle at $s=1$, which also occurs only in the case $a_n>1$ and the result
$$I_n(a_1,\dots,a_n)= \frac1\pi \, PV \int_0^\infty dt \, \frac{1}{1-t^2} \, \log\left|\frac{a_n+t}{a_n-t}\right| \, I_{n-1}(a_1/t,\dots,a_{n-1}/t) \\
\qquad\qquad + [a_n>1] \, \frac\pi2 \, I_{n-1}(a_1,\dots,a_{n-1})$$
follows.
For example for $n=1$ we have
$$I_0=\frac{\pi}{2}$$
and by (1)
$$I_1(a)=PV\int_0^{a} ds \int_0^\infty dt \, \frac{t}{(1-t^2)(t^2-s^2)} = PV \int_0^a ds \, \frac{\log(s)}{s^2-1} \\
= \frac12 \, \log(a) \log\left(\frac{1-a}{1+a}\right) + \frac12 \int_0^a \frac{\log(1+s)-\log(1-s)}{s} \, ds \\
=\frac12 \left[ \log(a) \log\left(\frac{1-a}{1+a}\right) + {\rm Li_2}(a) - {\rm Li_2}(-a) \right] \\
=\frac12 \left[ \frac{\pi^2}{4} - {\rm Li_2}\left(\frac{1-a}{1+a}\right) + {\rm Li_2}\left(-\frac{1-a}{1+a}\right) \right]
$$
by Abel's and Euler's reflection identity.