Find the close form of the integral $$\int_0^{\infty}\frac{\arctan x}{a^{2}x^2+1}\,dx,\qquad a > 0.$$
I think this integral related with polylogarithm function.
My attempt as follows:
Let $$I(b)=\int_0^{\infty}\frac{\arctan bx}{1+a^{2}x^{2}}\,dx.$$
Now differentiating with respect to $b$ we find:
$$I'(b)=\int_0^{\infty}\frac{x}{(1+a^{2}x^{2})(1+b^{2}x^2)}\,dx.$$
Then I use partial fraction:
$$ \begin{align*} I'(b)&=\int_0^{\infty}\frac{1}{a^2-b^2}\left(\frac{a^{2}x}{1+a^{2}x^{2}}-\frac{xb^{2}}{1+b^{2}x^2}\right)\,dx\\ &=\frac{1}{2(a^2-b^2)}\left(a^{2}\ln(1+a^{2}x^2)-b^{2}\ln(1+b^{2}x^{2})\right)\bigg|_0^{\infty} \end{align*} $$
I don't know how I complete this work ?