This definite integral has an equivalent closed form in terms of complete elliptic integrals,
$$\begin{align*} I &= \int_0^\tfrac\pi2 \frac{\sqrt{\sin x}}{1+\cos x} \, dx \\ & = 2 - \sqrt{\frac2\pi}\, \Gamma^2\left(\frac34\right) \\ &= \boxed{2 - 2\sqrt2 \, E\left(\frac1{\sqrt2}\right) + \sqrt2 \, K\left(\frac1{\sqrt2}\right)} \tag{$*$} \end{align*}$$
Q: Is there any way to algebraically reduce or transform $I$ to more readily obtain this elliptic integral form, without leaning on beta/gamma functions? Having made a similar connection recently, I'm wondering if the same can be done here.
Working backward from $(*)$, we have
$$\begin{align*} I &= 2 - 2\sqrt2 \int_0^\tfrac\pi2 \sqrt{1-\frac12\sin^2t} \, dt + \sqrt2 \int_0^\tfrac\pi2 \frac{dt}{\sqrt{1-\frac12\sin^2t}} \, dt \\ &= 2 \left(1 - \int_0^\tfrac\pi2 \frac{\cos^2t}{\sqrt{1+\cos^2t}} \, dt\right) \end{align*}$$
I've tried replacing $1=\int_0^{\pi/2} f(t) \, dt$ but I'm not sure if there's a clever choice of $f(t)$ that will cooperate best with the other integrand. For example, the trivial candidates $f\in\{\sin,\cos\}$ give
$$I = 2 \int_0^\tfrac\pi2 \frac{\sin t \sqrt{1+\cos^2t} - \cos^2t}{\sqrt{1+\cos^2t}} \, dt = 2 \int_0^\tfrac\pi2 \frac{\cos t \sqrt{1+\cos^2t} - \cos^2t}{\sqrt{1+\cos^2t}} \, dt \tag1$$
On the other hand, substituting $\cos y = \tan \dfrac x2$ produces a similar denominator,
$$I = \sqrt2 \int_0^\tfrac\pi2 \frac{\sin y \sqrt{\cos y}}{\sqrt{1+\cos^2y}} \, dy = \sqrt2 \int_0^\tfrac\pi2 \sqrt{\cos y} \sqrt{\frac{1-\cos^2y}{1+\cos^2y}} \, dy \tag2$$
but I cannot see any way to relate either form in $(1)$ with $(2)$.