In a recent answer I showed
$$I = \int_0^\tfrac\pi2 \frac{dx}{\left(\sqrt{\sin x}+\sqrt{\cos x}\right)^2} = \sqrt2 \left[F\left(\frac\pi4,\sqrt2\right) + E\left(\frac\pi4,\sqrt2\right)\right] - 2$$
where $F(\phi,k)/E(\phi,k)$ are the incomplete elliptic integrals of first/second kinds, as defined here. For $\lvert z\rvert<\dfrac\pi2$, the identities
$$\begin{cases} F(z, \csc z) = \sin z \, K(\sin z) \\ E(z, \csc z) = \csc z \, E(\sin z) - \cos z \cot z \, K(\sin z) \end{cases}$$
where $E(k)/K(k)$ are the complete EIs of first/second kinds, allow for the simplification
$$\sqrt2 \left[F\left(\frac\pi4,\sqrt2\right) + E\left(\frac\pi4,\sqrt2\right)\right] = 2 \, E\left(\frac1{\sqrt2}\right)$$
This leads me to believe there is a slightly more direct path to evaluating $I$ in terms of $E(k)$. Edit: Indeed, the key is to substitute $\sin x=\dfrac1{\sqrt2}\sin y$.
On the other hand, retracing only some of the steps of that answer (i.e. rationalization and IBP), we obtain another integral that evaluates to the same complete EI expression.
$$\begin{align*} I &= \int_0^\tfrac\pi2 \frac{dx}{\sin x + \cos x + 2\sqrt{\sin x\cos x}} \\ &= \int_0^\tfrac\pi2 \frac{\sin x+\cos x - 2\sqrt{\sin x \cos x}}{(\sin x+\cos x)^2 - 4\sin x\cos x} \, dx \\ &= \int_0^\tfrac\pi2 \frac{\sin x+\cos x - 2\sqrt{\sin x \cos x}}{1-2\sin x\cos x} \, dx \\ &= - 2 + \int_0^\tfrac\pi2 \frac{\sin x(\sin x+\cos x)}{\sqrt{\sin x\cos x}} \, dx \end{align*}$$
so that by some means,
$$J = \int_0^\tfrac\pi2 \frac{\sin x \left(\sin x+\sqrt{1-\sin^2x}\right)}{\sqrt{\sin x \sqrt{1-\sin^2x}}} \, dx \stackrel{?}= 2 \int_0^\tfrac\pi2 \sqrt{1-\frac12\sin^2y} \, dy$$
Q: How can we achieve this, if at all possible?