I'm interested in the ring $(\mathbb Z/30\mathbb Z,+,\times)$, the elements of which I'll write down in bold. For example $$\textbf{7}=7+30\mathbb Z=\{...-83,-53,-23,7,37,67...\}.$$
I'm interested in particular with $$U:=(\mathbb Z/30\mathbb Z)^\times=\{\textbf{1},\textbf{7},\textbf{11},\textbf{13},\textbf{17},\textbf{19},\textbf{23},\textbf{-1}\}$$
because every prime except $2,3$ and $5$ does belong to one of theses classes of numbers.
There is a lot of things to say about $\mathbb Z/30\mathbb Z$, but those are the types of objects that interest me : $$\boxed{J\overset{def1}=\{p\in (\mathbb Z/30\mathbb Z)^\times|p+\textbf{6}\in (\mathbb Z/30\mathbb Z)^\times \}}$$For example, $\textbf{19}\notin J$ $$\boxed{G\overset{def2}=\{p\in (\mathbb Z/30\mathbb Z)^\times|6p+\textbf{1}\in (\mathbb Z/30\mathbb Z)^\times\}}$$About $J$ and $G$, there's a result that I find interesting about involution defined below$$\boxed{\varphi:U\to U, u\mapsto u^{-1}\text{ induces bijection }\varphi_{/J}:J\to G}$$since $u\in J\overset{def1}\iff u+\textbf{6}\in U \iff u^{-1}(u+\textbf{6})\in U\iff \textbf{1}+6u^{-1}\in U\overset{def2}\iff u^{-1}\in G$

Edit (to generalize, see question 3):
let $p_1=2,p_2=3,p_3,...$ the prime numbers. $$\forall n \in \mathbb N^*, p_n\#:=p_1...p_n\text{ (n-th primorial)}$$ $$U_n:=(\mathbb Z/p_n\#\mathbb Z)^\times$$ $$J_n:=\{p\in U_n|p+6\in U_n\}$$ $$G_n:=\{p\in U_n|6p+1\in U_n\}$$ $$\text{result :}|J_n|=2(p_n-2)...(p_2-2). \text{So, }\lim_{n \to \infty}|J_n|=+\infty$$
My questions:
1.- I was wondering if $J$ and $G$ were given names and if not, why?
2.-If you have other simple results like this in $(\mathbb Z/30\mathbb Z)^\times$, for example like $|J|=|G|=2(5-2)(3-2)=6$, where $|X|$ denotes the number of elements of a set $X$.
3.- These results easily extend to $\mathbb Z/210\mathbb Z(\text{for example }, |J_4|=|G_4|=2(7-2)(5-2)(3-2)), \mathbb Z/2310\mathbb Z, ..., \mathbb Z/p_n \# \mathbb Z$.
Does the switch to $\mathbb Z/210\mathbb Z$ bring any interesting new results?
\langleand\rangleinstead of $\lt$ and $\gt$ (which yield the wrong spacing because they’re interpreted as binary operators).) – joriki Mar 24 '24 at 05:20