$\sqrt[n]{\dfrac{a\,x+b}{c\,x+d}}$ With a common denominator of powers $\left(\dfrac{2\,x+1}{3\,x+2}\right)^{\mathbf{n}}$ with $\mathbf{n}=\dfrac{1}{2}$ and $p=2$
$$\def\arraystretch{2}\begin{array}{c|c}u=\dfrac{\sqrt{2\,x+1}}{\sqrt{3\,x+2}}&x=\dfrac{1-2\,{u}^{2}}{3\,{u}^{2}-2}\\&\mathrm{d}x=\dfrac{2\,u}{\left({3\,{u}^{2}-2}\right)^{2}}\,\mathrm{d}u\end{array}$$
$$\int{\dfrac{2\,{u}^{2}}{\left({3\,{u}^{2}-2}\right)^{2}}}{\;\mathrm{d}u}$$
Integration by parts $\int{fg'}=fg-\int{f'g}$
$$\def\arraystretch{2}\begin{array}{c|c}f=u&g'=\dfrac{u}{\left({3\,{u}^{2}-2}\right)^{2}}\\f'=1&g=\,{\displaystyle\int{\dfrac{u}{\left({3\,{u}^{2}-2}\right)^{2}}\;\mathrm{d}u}=\dfrac{1}{6}\,\int{\dfrac{1}{\left({3\,{u}^{2}-2}\right)^{2}}\;\mathrm{d}\left(3\,{u}^{2}-2\right)}=-\dfrac{1}{6\,\left(3\,{u}^{2}-2\right)}}\end{array}$$
$$2\left(-\dfrac{u}{6\,\left(3\,{u}^{2}-2\right)}+\int{\dfrac{1}{6\,\left(3\,{u}^{2}-2\right)}}{\;\mathrm{d}u}\right)=$$
=-$$\dfrac{\ln\left(\left|\sqrt{3}\,u+\sqrt{2}\right|\right)}{2\,\sqrt{2}\,3\,\sqrt{3}}+\dfrac{\ln\left(\left|\sqrt{3}\,u-\sqrt{2}\right|\right)}{2\,\sqrt{2}\,3\,\sqrt{3}}-\dfrac{u}{3\,\left(3\,{u}^{2}-2\right)}$$
Notes
$$\int{\dfrac{1}{6\,\left(3\,{u}^{2}-2\right)}}{\;\mathrm{d}u}$$
$$\dfrac{1}{6}\int{\dfrac{1}{3\,\left({u}^{2}-\dfrac{2}{3}\right)}}{\;\mathrm{d}u}$$
$$\dfrac{1}{18}\int{\dfrac{1}{\left(u-\dfrac{\sqrt{2}}{\sqrt{3}}\right)\,\left(u+\dfrac{\sqrt{2}}{\sqrt{3}}\right)}}{\;\mathrm{d}u}$$
Grouping
$$1=-\dfrac{\sqrt{3}}{2\,\sqrt{2}}\,\left(\left(u-\dfrac{\sqrt{2}}{\sqrt{3}}\right)-\left(u+\dfrac{\sqrt{2}}{\sqrt{3}}\right)\right)$$
$$\dfrac{1}{18}\int{-\dfrac{\sqrt{3}\,\left(\dfrac{1}{u+\dfrac{\sqrt{2}}{\sqrt{3}}}-\dfrac{1}{u-\dfrac{\sqrt{2}}{\sqrt{3}}}\right)}{2\,\sqrt{2}}}{\;\mathrm{d}u}$$
$$\dfrac{1}{18}\left(-\dfrac{\sqrt{3}}{2\,\sqrt{2}}\int{\dfrac{1}{u+\dfrac{\sqrt{2}}{\sqrt{3}}}}{\;\mathrm{d}u}+\dfrac{\sqrt{3}}{2\,\sqrt{2}}\int{\dfrac{1}{u-\dfrac{\sqrt{2}}{\sqrt{3}}}}{\;\mathrm{d}u}\right)=$$
$$=\dfrac{\ln\left(\left|\sqrt{3}\,u-\sqrt{2}\right|\right)}{4\,\sqrt{2}\,3\,\sqrt{3}}-\dfrac{\ln\left(\left|\sqrt{3}\,u+\sqrt{2}\right|\right)}{4\,\sqrt{2}\,3\,\sqrt{3}}$$
$$\int{\dfrac{1}{u+\dfrac{\sqrt{2}}{\sqrt{3}}}}{\;\mathrm{d}u}$$
$$\int{\dfrac{\sqrt{3}}{\sqrt{3}\,u+\sqrt{2}}}{\;\mathrm{d}u}$$
$$\def\arraystretch{2}\begin{array}{c|c}v=\sqrt{3}\,u+\sqrt{2}&u=\dfrac{v-\sqrt{2}}
{\sqrt{3}}\\&\mathrm{d}u=\dfrac{1}{\sqrt{3}}\,\mathrm{d}v\end{array}$$
$$\sqrt{3}\int{\dfrac{1}{\sqrt{3}\,v}}{\;\mathrm{d}v}$$
Substitution
$$\begin{array}{c|c}v=\sqrt{3}\,u+\sqrt{2}&u=\dfrac{v-\sqrt{2}}{\sqrt{3}}\end{array}$$
$$\ln\left(\left|\sqrt{3}\,u+\sqrt{2}\right|\right)$$