Proof. It suffices to prove that
$$\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\le \frac{3}{4}
\sqrt{3a+3b+3c+10}$$
or
$$\left(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\right)^2 \le \frac{9}{16}
(3a+3b+3c+10).\tag{1}$$
By Cauchy-Bunyakovsky-Schwarz inequality, we have
\begin{align*}
&\left(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\right)^2\\[6pt]
\le{}& \left(\sum_{\mathrm{cyc}}\frac{a + bc}{23ab + 44bc + 23ca + 23a + 2b + 2c}\right)\\[6pt]
&\qquad \cdot \left(\sum_{\mathrm{cyc}} (23ab + 44bc + 23ca + 23a + 2b + 2c)\right)\\[6pt]
={}& \left(\sum_{\mathrm{cyc}}\frac{a + bc}{23ab + 44bc + 23ca + 23a + 2b + 2c}\right) \cdot 9(3a + 3b + 3c + 10). \tag{2}
\end{align*}
From (1) and (2), it suffices to prove that
$$\sum_{\mathrm{cyc}}\frac{a + bc}{23ab + 44bc + 23ca + 23a + 2b + 2c} \le \frac{1}{16}. \tag{3}$$
We use pqr method. Let $p = a + b + c, q = ab + bc + ca = 1, r = abc$. Using $p^2\ge 3q = 3$, we have $p \ge \sqrt 3$.
(3) is equivalently written as
$$-1701\,{r}^{2}+ \left( -1767\,{p}^{2}+2841\,p+3978 \right) r + 2(p-2)(2p^2+25p+86)
\ge 0.$$
Using $q^2 \ge 3pr$, it suffices to prove that
$$-1701\,{r}\cdot \frac{1}{3p}+ \left( -1767\,{p}^{2}+2841\,p+3978 \right) r + 2(p-2)(2p^2+25p+86)
\ge 0$$
or
$$\left(-\frac{567}{p} -1767\,{p}^{2}+2841\,p+3978 \right) r + 2(p-2)(2p^2+25p+86) \ge 0. \tag{4}$$
We split into two cases.
Case 1. $\sqrt 3 \le p \le 2$
Using $r \ge \frac{4pq - p^3}{9} = \frac{p(4 - p^2)}{9}$ (degree three Schur), using $-\frac{567}{p} -1767\,{p}^{2}+2841\,p+3978 > 0$, it suffices to prove that
$$\left(-\frac{567}{p} -1767\,{p}^{2}+2841\,p+3978 \right) \cdot \frac{p(4 - p^2)}{9} + 2(p-2)(2p^2+25p+86) \ge 0$$
or
$$\frac13(p - 2)(589p^4 + 231p^3 - 3208p^2 - 2313p + 894) \ge 0$$
which is true.
Case 2. $p > 2$
Clearly, we only need to prove the case that $-\frac{567}{p} -1767\,{p}^{2}+2841\,p+3978 < 0$.
From $0 \le (a-b)^2(b-c)^2(c-a)^2 = -4\,{p}^{3}r+{p}^{2}{q}^{2}+18\,pqr-4\,{q}^{3}-27\,{r}^{2}$, we have
$$r \le - \frac{2}{27} p^3 + \frac{p}{3}
+ \frac{2}{27}(p^2 - 3)\sqrt{p^2 - 3} =: r_2.$$
It suffices to prove that
$$\left(-\frac{567}{p} -1767\,{p}^{2}+2841\,p+3978 \right) \cdot r_2 + 2(p-2)(2p^2+25p+86) \ge 0 \tag{5}$$
which is true.
We are done.