Let $$\sum\limits_{r=0}^x r^m = P_m(x).$$
Then $$\sum\limits_{r=0}^x (-1)^rr^m = -\sum\limits_{0 \leq r \leq x}r^m+2 \sum\limits_{0 \leq 2r \leq x}(2r)^m=-\sum\limits_{0 \leq r \leq x}r^m+2^{m+1} \sum\limits_{0 \leq r \leq x/2}r^m = -P_m(x)+2^{m+1}P_m([x/2]).$$
It is well-known that $P_m(x)$ is polynomail of degree $m+1$. Let $P_m(x)=c_{m+1}x^{m+1}+c_mx^m+o(x^{m-1})$. Let $x$ be even.(for odd $x$ as in question we can do something similar) Then
$-P_m(x)+2^{m+1}P_m(x/2)=-x^{m+1}c_{m+1}-x^mc_m+2^{m+1}(x/2)^{m+1}c_{m+1}+2^{m+1}(x/2)^{m}c_{m}+o(x^{m-1})=c_m x^{m}+o(x^{m-1}).$
So we only need to know that $c_m = -1/2.$
This is easy if your know properties of bernoulli polynomials. Wiki reads:
$P_m(x)=(B_{m+1}(x+1)-B_{m+1})/(m+1)$. And $$B_{m}(x)=\sum\limits_{k=0}^mC_m^kB_{m-k}x^k.$$
So our statement follows from the formula $B_0=1, B_1=-1/2.$