If I'm not mistaken, I think we have
$$g(x)=\sqrt\pi D^+(\sqrt{x}/2)+O\bigg(\color{red}{x^{3/2}} e^{-\pi^2/x}\bigg)$$
Setting $t=\sqrt y$, we get
$$\begin{align}g(x)&=e^{-x/4}\int_0^{x/4}e^y\vartheta(2\textstyle\sqrt{y/\pi})dy
\\\\&=e^{-x/4}\int_0^{\sqrt x/2}e^{t^2}\vartheta(2\textstyle\sqrt{t^2/\pi})2tdt
\\\\&=e^{-x/4}\int_0^{\sqrt x/2}\sqrt{\pi}e^{t^2}\vartheta(2t/\sqrt{\pi})2t/\sqrt{\pi}dt
\\\\&=\sqrt{\pi}e^{-x/4}\int_0^{\sqrt x/2}e^{t^2}\vartheta\bigg(\frac{\sqrt{\pi}}{2t}\bigg)dt
\\\\&=\sqrt{\pi}e^{-x/4}\int_0^{\sqrt x/2}e^{t^2}\sum_{n\in\mathbb{Z}}e^{-\frac{n^2\pi^2}{4t^2}}dt
\\\\&=\sqrt{\pi}e^{-x/4}\int_0^{\sqrt x/2}e^{t^2}\bigg(1+2\sum_{n\ge 1}e^{-\frac{n^2\pi^2}{4t^2}}\bigg)dt
\\\\&=\sqrt\pi D^+(\sqrt{x}/2)+2\sqrt{\pi}e^{-x/4}\underbrace{\int_0^{\sqrt x/2}\sum_{n\ge 1}e^{t^2-\frac{n^2\pi^2}{4t^2}}dt}_{G(x)}\end{align}$$
Here, we have
$$G(0)=0\qquad\text{and}\qquad G'(x)=\sum_{n\ge 1}\frac{e^{x/4-n^2\pi^2/x}}{4\sqrt x}$$
Since $(\text{erf}(x))'=\frac{2}{\sqrt{\pi}}e^{-x^2}$, we have
$$\bigg(\text{erf}\bigg(\frac{n\pi}{\sqrt x}\pm\frac{i\sqrt x}{2}\bigg)\bigg)'=e^{x/4-n^2\pi^2/x}(-1)^{n+1}\bigg(\frac{n\sqrt{\pi}}{x^{3/2}}\mp\frac{i}{2\sqrt{\pi x}}\bigg)$$
Using this, we obtain
$$G(x)=\sum_{n\ge 1}\frac{(-1)^ni\sqrt{\pi}}{4}\bigg(\text{erf}\bigg(\frac{n\pi}{\sqrt{x}}-\frac{ i\sqrt x}{2}\bigg) - \text{erf}\bigg(\frac{n\pi}{\sqrt x}+\frac{i\sqrt x}{2}\bigg)\bigg) $$
Using
$$\text{erf}(X)=1-\frac{e^{-X^2}}{\sqrt{\pi}X}+O\bigg(\frac{e^{-X^2}}{X^3}\bigg)$$
we have, for small $x$,
$$\begin{align}G(x)&= \sum_{n\ge 1}\frac{(-1)^ni\sqrt{\pi}}{4} \bigg(1-\frac{e^{-(\frac{n\pi }{\sqrt x}-\frac{i\sqrt x}{2})^2}}{\sqrt{\pi}(\frac{n\pi }{\sqrt x}-\frac{i\sqrt x}{2})} -\bigg(1-\frac{e^{-(\frac{n\pi }{\sqrt x}+\frac{i\sqrt x}{2})^2}}{\sqrt{\pi}(\frac{n\pi }{\sqrt x}+\frac{i\sqrt x}{2})} \bigg)\bigg)
\\\\&=\sum_{n\ge 1} \frac{(-1)^ni\sqrt{\pi}}{4} \bigg(-\frac{e^{-\frac{n^2\pi^2}{x}+n\pi i+\frac{x}{4}}}{\sqrt{\pi}(\frac{n\pi }{\sqrt x}-\frac{i\sqrt x}{2})}+\frac{e^{-\frac{n^2\pi^2}{x}-n\pi i+\frac{x}{4}}}{\sqrt{\pi}(\frac{n\pi }{\sqrt x}+\frac{i\sqrt x}{2})} \bigg)
\\\\&=\sum_{n\ge 1} \frac{(-1)^ni\sqrt{\pi}}{4} \bigg(-\frac{(-1)^ne^{-\frac{n^2\pi^2}{x}+\frac{x}{4}}}{\sqrt{\pi}(\frac{n\pi }{\sqrt x}-\frac{i\sqrt x}{2})}+\frac{(-1)^ne^{-\frac{n^2\pi^2}{x}+\frac{x}{4}}}{\sqrt{\pi}(\frac{n\pi }{\sqrt x}+\frac{i\sqrt x}{2})} \bigg)
\\\\&=\sum_{n\ge 1} \frac{i\sqrt{\pi}}{4} \bigg(-\frac{e^{x/4-n^2\pi^2/x}}{\sqrt{\pi}(\frac{n\pi }{\sqrt x}-\frac{i\sqrt x}{2})}+\frac{e^{x/4-n^2\pi^2/x}}{\sqrt{\pi}(\frac{n\pi }{\sqrt x}+\frac{i\sqrt x}{2})} \bigg)
\\\\&=\sum_{n\ge 1}\frac{x^{3/2}}{x^2+4n^2\pi^2}e^{x/4-n^2\pi^2/x}
\\\\&=\sum_{n\ge 1}\bigg(\frac{x^{3/2}}{4n^2\pi^2}+O\bigg(x^{7/2}\bigg)\bigg)e^{x/4-n^2\pi^2/x}\end{align}$$
from which we have
$$g(x)=\sqrt\pi D^+(\sqrt{x}/2)+O\bigg(x^{3/2} e^{-\frac{\pi^2}{x}}\bigg)\tag1$$
As commented by Mariusz Iwaniuk, using
$$D_+(z)=\frac12\sum_{n=0}^\infty\frac{(-1)^n n!}{(2n+1)!}(2z)^{2n+1}$$
we have
$$\sqrt\pi D^+(\sqrt{x}/2)=\frac{\sqrt{\pi}}2\sum_{n=0}^\infty\frac{(-1)^n n!}{(2n+1)!}(\sqrt{x})^{2n+1}=\sqrt{\pi x}/2+O(x^{3/2})\tag2$$
It follows from $(1)(2)$ that
$$g(x)=\sqrt{\pi x}/2+O(x^{3/2})$$