I cannot justify this rigourosly but let me try it for $x\geq 1+\varepsilon>1$ we have :
$$f\left(x\right)=\frac{e^{-k^{2}x}-e^{-(k+1)^{2}x}}{x\left(2k+1\right)}\leq \int_{0}^{\infty}\left(2k+1\right)f\left(x+1\right)dx$$
We use Frullani's integral to give a upper bound wich is :
$$2x\ln(n+1)$$
Following my idea we can improving it (and following the result @Metamorphy) if we have for $x\geq 1+\varepsilon>1$
$$g\left(x\right)=\frac{e^{-k^{2}x}-e^{-(k+1)^{2}x}}{\sqrt{x}\left(2k+1\right)}\leq C\int_{0}^{\infty}\frac{ke^{-k^{2}\left(1+x\right)}-\left(k+1\right)e^{-(k+1)^{2}\left(1+x\right)}}{\sqrt{1+x}}dx$$
We have as upper bound :
$$C\sqrt{x\pi}(\operatorname{erf(n)}-\operatorname{erf(1)})$$
Now if we have for $x,k\geq 1$:
$$h\left(x\right)=C\int_{0}^{\infty}\left(k^{2}e^{-k^{2}\left(1+y\right)}-\left(k+1\right)^{2}e^{-(k+1)^{2}\left(1+y\right)}\right)dy-r\left(x\right)>0$$
Where $r\left(x\right)=\frac{e^{-k^{2}x}-e^{-(k+1)^{2}x}}{2k+1}$
We have as upper bound :
$$1$$
Starting from $k=2$ we have as upper bound :
$$\sum_{k=0}^{1}\frac{\left(e^{-k^{2}x}-e^{-\left(k+1\right)^{2}x}\right)}{2k+1}+e^{-4x}$$