There are several ways to do it. One straightforward way is to factor the octic into two quartics over a square root extension, then use the quartic formula. Quartics have a cubic resolvent, but since the $17$th root of unity is construcible, then we know this cubic will also factor over a square root.
I. Factoring the octic
Given,
$$x^8+x^7-7x^6-6x^5+15x^4+10x^3-10x^2-4x+1= 0$$
Factor this into two quartics over $\sqrt{17}$ choosing,
$$x^4 + \frac{1 - \sqrt{17}}2x^3 - \frac{3 + \sqrt{17}}2x^2 + (2 + \sqrt{17})x - 1 = 0$$
such that $x = 2\cos \left(\frac{2\pi}{17} \right)$. Depress the quartic with the transformation,
$$x = y+\frac{-1 + \sqrt{17}}8$$
to get,
$$y^4 + \frac{-51 - 5\sqrt{17}}{16}y^2 + \frac{17 + 7\sqrt{17}}{16}y + \frac{221 + 43 \sqrt{17}}{512} = 0$$
II. Depressed quartic
Given,
$$y^4+py^2+qy+r = 0$$
then its cubic resolvent is simply,
$$ u^3 + 2p u^2 + (p^2 - 4r)u - q^2 =0$$
With any non-zero root $u$, then the depressed quartic's formula for the four roots are,
$$y_k = \frac12\left(\sqrt{u}\pm\sqrt{-(2p+u)-\frac{2q}{\sqrt{u}}}\right)$$
for $\pm\sqrt{u}$ and you are done.
III. Cubic resolvent
Given $(p,q,r)$ we find the resolvent as,
$$u^3 + \frac{-51 - 5 \sqrt{17}}8u^2 + \frac{323 + 53 \sqrt{17}}{32}u - \left(\frac{17 + 7\sqrt{17}}{16}\right)^2 = 0$$
this has the root,
$$u = \frac{17-\sqrt{17}}{8}$$
Using the formula and reversing the transformation, we find,
$$x = \frac{-1+\sqrt{17}}8+\frac12\sqrt{u}+\frac12\sqrt{\sqrt{17}+2u-\sqrt{\frac{17}{u}}-\sqrt{u}}$$
After some minor algebraic manipulation, we end up with the original form,
$$\small{x_1 = 2\cos \left(\frac{2\pi}{17} \right) = \frac{1}{8} \left( -1 + \sqrt{17} + \sqrt{ 2 \left(17 - \sqrt{17} \right)}
+ 2 \sqrt{ 17 + 3 \sqrt{17} - \sqrt{2 \left(17- \sqrt{17} \right)} - 2 \sqrt{2 \left(17+ \sqrt{17} \right)} } \right)}$$
IV. Conjugate
Using one of its conjugates,
$$\small{x_2 = 2\cos \left(\frac{8\pi}{17} \right) = \frac{1}{8} \left( -1 + \sqrt{17} + \sqrt{ 2 \left(17 - \sqrt{17} \right)}
\color{red}{-} 2 \sqrt{ 17 + 3 \sqrt{17} - \sqrt{2 \left(17- \sqrt{17} \right)} - 2 \sqrt{2 \left(17+ \sqrt{17} \right)} } \right)}$$
then,
$$t=x_1+x_2 = 2\cos \left(\frac{2\pi}{17} \right)+2\cos \left(\frac{8\pi}{17} \right) = \frac{1}{4} \left( -1 + \sqrt{17} + \sqrt{ 2 \left(17 - \sqrt{17} \right)}\right)$$
a root of,
$$t^4 + t^3 - 6t^2 - t + 1 = 0$$
which was the second question of the OP.
Factor[x^8 + x^7 - 7 x^6 - 6 x^5 + 15 x^4 + 10 x^3 - 10 x^2 - 4 x + 1, Extension -> Cos[2 Pi/17]]return all roots. – Dmitry Ezhov Aug 15 '23 at 01:06