Let the Dirichlet inverse of the Euler totient function be:
$$\vartheta(n) = \sum\limits_{d|n} d \cdot \mu(d) \tag{1}$$
and compute the sum:
$$q(x,n)=\sum _{h=0}^{\infty } \left(\sum _{k=1}^n x^{h n+k} \vartheta(\gcd (n,k))\right)$$
This is a sequence of ratios of polynomials:
$$q(x,1,2,3,...)=\frac{x}{1-x},\frac{x}{x+1},\frac{2 x^2+x}{x^2+x+1},\frac{x}{x+1},\frac{4 x^4+3 x^3+2 x^2+x}{x^4+x^3+x^2+x+1},\frac{x-2 x^2}{x^2-x+1},\frac{6 x^6+5 x^5+4 x^4+3 x^3+2 x^2+x}{x^6+x^5+x^4+x^3+x^2+x+1},\frac{x}{x+1},\frac{2 x^2+x}{x^2+x+1},\frac{-4 x^4+3 x^3-2 x^2+x}{x^4-x^3+x^2-x+1},...$$
Separate numerators and denominators, and set $x=1$:
This gives values for numerators of $q(1,n)$:
{1, 1, 3, 1, 10, -1, 21, 1, 3, -2, 55, -1, 78, -3, -4, 1, 136, -1, 171, \
-2, -6, -5, 253, -1, 10, -6, 3, -3, 406, 4,...}
and values for denominators of $q(1,n)$:
{0, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, \
23, 1, 5, 1, 3, 1, 29, 1,...}
Question 1:
Show that numerators are of the form:
$$\frac{1}{2} \vartheta(n) (-\exp (\Lambda (n)))$$
and denominators of the form:
$$\exp (\Lambda (n))$$
Where $\Lambda(n)$ is the von Mangoldt function.
Question 2:
It would also be interesting to know what:
$$\sum _{k=1}^{\infty } y^k q(x,n)$$
converges to.
"Mathematica start:"
Clear[s, x]
a[n_] := Total[Divisors[n]*MoebiusMu[Divisors[n]]]
Monitor[q =
Table[Sum[
Sum[a[GCD[n, k]]*x^(n*h + k), {k, 1, n}], {h, 0, Infinity}], {n,
1, 30}];, n]
numerator = Numerator[q]
denominator = Denominator[q]
x = 1;
numerator
denominator
%%/%
"Mathematica end:"
Clear[s, x, a, t, q]; nn = 20; a[n_] := Total[Divisors[n]*MoebiusMu[Divisors[n]]]; Monitor[polynomial = Table[Sum[ Sum[a[GCD[n, k]]*x^(n*h + k), {k, 1, n}], {h, 0, Infinity}], {n, 1, nn}];, n]; (*polynomial=Table[Cyclotomic[n,x],{n,1,nn}]^-1;*) table = Table[ Chop[Accumulate[ N[x /. Solve[polynomial[[n]]^-1 == 0, x], 20]]]*(-1)^ PrimeNu[n], {n, 1, nn}]; (table2 = Table[table[[n]][[Floor[Length[table[[n]]]/2]]], {n, 1, Length[table]}]) // Column– Mats Granvik Aug 17 '23 at 00:14