$$x^4+1=x^4+2x^2+1-2x^2=$$ $$=(x^2+1)^2-2x^2=(x^2-\sqrt2 x+1)(x^2+\sqrt2x+1)$$
using partial fractions
$$\frac{x^2+1}{x^4+1}=\frac{Ax+B}{x^2-\sqrt2 x+1}+\frac{Cx+D}{x^2+\sqrt2 x+1}$$
then
$A=C=0$ and $B=D=\frac{1}{2}$
$$\int \frac{x^2+1}{x^4+1}=\int \frac{1}{2}(\frac{1}{x^2-\sqrt2 x+1}+\frac{1}{x^2+\sqrt2 x+1})=$$ $$=\int \frac{1}{2}(\frac{1}{(x-\frac{1}{\sqrt2})^2 + \frac{1}{2}}+\frac{1}{(x+\frac{1}{\sqrt2})^2 + \frac{1}{2}})=$$ $$=\int \frac{1}{(\sqrt2x-1)^2+1} + \frac{1}{(\sqrt2x+1)^2+1}=$$ $$=\int \frac{1}{\sqrt2}(\frac{\ du}{1+u^2}+\frac{\ dv}{1+v^2})=$$ $$= \frac{1}{\sqrt2}(\arctan u +\arctan v)=$$ $$=\frac{1}{\sqrt2}(\arctan (\sqrt2x-1)+\arctan (\sqrt2x+1)) + c$$
$u=\sqrt2x-1,\ du=\sqrt2\ dx$
$v=\sqrt2x+1,\ dv=\sqrt2\ dx$