Evaluate $$ \int\frac{\mathrm{d}x}{(1+x^2)\sqrt{1-x^2}}. $$
Set $x=\tan u\implies\mathrm{d}x=\sec^2u\,\mathrm{d}u$. $$ I=\int\frac{\mathrm{d}x}{(1+x^2)\sqrt{1-x^2}}=\int\frac{\sec^2u\,\mathrm{d}u}{\sec^2u\,\dfrac{\sqrt{1-2\sin^2u}}{\cos u}}=\int\frac{\cos u\,\mathrm{d}u}{\sqrt{1-2\sin^2u}}. $$ Set $t=\sqrt2\sin u\implies\mathrm{d}t=\sqrt2\cos u\,\mathrm{d}u$ $$ I=\frac1{\sqrt2}\int\frac{\mathrm{d}t}{\sqrt{1-t^2}}=\frac1{\sqrt2}\sin^{-1}t+c=\frac1{\sqrt2}\sin^{-1}\left(\sqrt{2}\sin u\right)+c=\frac1{\sqrt2}\sin^{-1}\left(\frac{\sqrt2x}{\sqrt{1+x^2}}\right)+c. $$ But my reference gives the solution $\dfrac{-1}{\sqrt{2}}\sin^{-1}\sqrt{\dfrac{1-x^2}{1+x^2}}+c$, where am I going wrong with my attempt ?