I want to find all the connected covering spaces of $\mathbb{R}\mathbb{P}^{15} \vee \mathbb{R}\mathbb{P}^{14}$.
My attempt:
I know that $\pi_1(\mathbb{R}\mathbb{P}^{15} \vee \mathbb{R}\mathbb{P}^{14}) \cong \pi_1(\mathbb{R}\mathbb{P}^{15}) * \pi_1(\mathbb{R}\mathbb{P}^{14}) \cong \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$. I also know that connected covering spaces of $B$ are in one-to-one correspondence with subgroups of $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} = \langle a \rangle * \langle b \rangle$.
The full group $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$ corresponds to the trivial cover $p:\mathbb{R}\mathbb{P}^{15} \vee \mathbb{R}\mathbb{P}^{14} \rightarrow \mathbb{R}\mathbb{P}^{15} \vee \mathbb{R}\mathbb{P}^{14}$.
The trivial subgroup $\{ e \}$ corresponds to the universal cover $p:S^{15} \vee S^{14} \rightarrow \mathbb{R}\mathbb{P}^{15} \vee \mathbb{R}\mathbb{P}^{14}$.
The subgroup generated by $a$, $\langle a \rangle \cong \mathbb{Z}_2 * \{ e \}$, corresponds to the cover $p:\mathbb{R}\mathbb{P}^{15}\vee S^{14}\rightarrow \mathbb{R}\mathbb{P}^{15} \vee \mathbb{R}\mathbb{P}^{14}$.
Similarly, the subgroup generated by $b$, $\langle b \rangle \cong \{ e \} * \mathbb{Z}_2$, corresponds to the cover $p:S^{15}\vee \mathbb{R}\mathbb{P}^{14} \rightarrow \mathbb{R}\mathbb{P}^{15} \vee \mathbb{R}\mathbb{P}^{14}$.
I think there are two subgroup of $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$ that is isomorphic to $\mathbb{Z}$, namely the subgroup generated by $(ab)$ and $(ba)$. However, I am not sure what these two covering spaces would look like.
Am I missing anything else? Thank you in advance.