17

I found this integral from a friend of mine $$I = \int_0^{\frac{\sqrt3}2} {\frac{1}{{{x^{3/4}}{{\left( {1 + x} \right)}^{3/4}}}}dx} $$

Which its closed-form is :$$\frac{{2\sqrt 2 {\pi ^{3/2}}}}{{3{\Gamma ^2}( {\frac{3}{4}} )}}$$ Look at this closed form I have a feeling that the given integral can be involved with the complete elliptic integral of the first kind $K( {\frac{1}{2}} )$. But I don't know how to convert this integral to get that result.

I tried to use sub:$$\eqalign{ & x = \frac{{1 - t}}{{1 + t}} \Rightarrow t = \frac{{1 - x}}{{1 + x}} \Rightarrow dx = - \frac{2}{{{{\left( {1 + t} \right)}^2}}}dt \cr & \Rightarrow I = \frac{2}{{{2^{3/4}}}}\int\limits_{7 - 4\sqrt 3 }^1 {\frac{1}{{\sqrt {1 + t} {{\left( {1 - t} \right)}^{3/4}}}}} dt,{\text{ since }}7 - 4\sqrt 3 = {\left( {2 - \sqrt 3 } \right)^2}{\text{ then let}}:t = {u^2} \cr & \Rightarrow I = \frac{4}{{{2^{3/4}}}}\int\limits_{2 - \sqrt 3 }^1 {\frac{u}{{\sqrt {1 + {u^2}} {{\left( {1 - {u^2}} \right)}^{3/4}}}}} du \cr} $$

So I get stuck here. May I ask for help? Or give me a hint about substitution. Thank you very much.

Edit #1: After using generalized binomial theorem and changing order of summation and integration, with some manipulation with the last sum, I arrived at:$$I=2\ 2^{3/4} \sqrt[8]{3} \, _2F_1\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-\frac{\sqrt{3}}{2}\right)$$

May be, there is a transformation with $_2F_1$ can link this result with the elliptic integral. I am still trying to figure out.

MathFail
  • 21,529
OnTheWay
  • 3,523
  • 1
    The integral equals $\sqrt2(-1)^\frac34\int_\pi^{2\sin^{-1}\left(\frac{\sqrt3+1}2\right)}\sin^{-\frac12}(x)$, with the complex arcsine, and the antiderivative being an elliptic integral, but it is hard to see how this would give $\frac{4\sqrt2}3K(1/2)$. Maybe we need a parameter transformation formula – Тyma Gaidash Jun 29 '23 at 12:21
  • 4
    Btw, please don't delete posts if you later think that it's "too easy" or whatever. E.g. this one about the inverse tangent, you've deleted it twice now. It's generally good for the community to leave (well-received) posts standing, they may receive interesting answers in the future – FShrike Jun 29 '23 at 14:32
  • 1
    This integral is an example of an incomplete beta function. Hopefully that will help you find information. – Greg Martin Jun 29 '23 at 16:26

4 Answers4

10

This is to answer the OP how to convert it to the elliptic integral. Let $u=2x+1$

$$I=\int_1^{1+\sqrt3} \frac1{(u^2-1)^{3/4}}du$$

Let $u=\csc \theta$

$$I=\sqrt2\int_{\theta_0}^{\pi/2} \frac1{\sqrt{\sin\theta\cos\theta}}d\theta$$

where $\theta_0=\arcsin\frac{\sqrt3-1}2$, and note that

$$2\sin\theta\cos\theta=(\sin\theta+\cos\theta)^2-1=2\cos^2(\theta-\frac\pi4)-1=1-2\sin^2(\theta-\frac\pi4)$$

hence $$I=2\int_{\theta_0}^{\pi/2} \frac1{\sqrt{1-2\sin^2(\theta-\frac\pi4)}}d\theta$$

Let $\phi=\theta-\frac\pi4$

$$I=2\int_{\theta_0-\frac\pi4}^{\frac\pi4} \frac1{\sqrt{1-2\sin^2 \phi}}d\phi$$

Use the defintion of elliptic integral of the first kind

$$F(a,k)=\int_0^a \frac1{\sqrt{1-k^2\sin^2\phi}}d\phi$$

We get

$$\int_0^{\frac{\sqrt3}2} {\frac{1}{{{x^{3/4}}{{\left( {1 + x} \right)}^{3/4}}}}dx}=2F\left(\frac\pi4,\sqrt2\right)-2F\left(\arcsin\left(\frac{\sqrt3-1}2\right)-\frac\pi4,\sqrt2\right)\tag{1}$$

Using the Reciprocal-Modulus Transformation formula as suggested by @Tyma Gaidash, the first half of eq.(1) is converted to

$$2F\left(\frac\pi4,\sqrt2\right)=2\cdot \frac1{\sqrt2} F\left(\frac\pi2, \frac1{\sqrt2}\right)=\sqrt2 K\left(\frac1{\sqrt2}\right)$$

where $K(k)=\int_0^\frac\pi2 \frac1{\sqrt{1-k^2\sin^2\phi}}d\phi$ is complete elliptic integral of the first kind, hence

$$\boxed{\int_0^{\frac{\sqrt3}2} {\frac{1}{{{x^{3/4}}{{\left( {1 + x} \right)}^{3/4}}}}dx}=\sqrt2 K\left(\frac1{\sqrt2}\right)-2F\left(\arcsin\left(\frac{\sqrt3-1}2\right)-\frac\pi4,\sqrt2\right)}$$


Remarks:

For the closed form, the integral limit $\sqrt3+1=\frac2{\sqrt3-1}$ reminds me maybe it is related to the elliptic curve, where I ever asked a question here. But I have very limited knowledge on this topic.

MathFail
  • 21,529
  • Thank you for your efforts. – OnTheWay Jun 30 '23 at 04:48
  • You can continue further by noting that $x=\sqrt{2}\sin(\pi/4-\arcsin((\sqrt{3}-1)/2))$ is a root of $k^2x^4-2k^2x^3+2x-1=0$ where $k=1/\sqrt{2}$ and hence $F(\arcsin x, 1/\sqrt{2})=K(1/\sqrt{2})/3$ and you are done. – Paramanand Singh Jun 10 '25 at 01:54
5

$\def\cn{\operatorname{cn}} \def\dn{\operatorname{dn}} \def\K{\operatorname K} \def\I{\operatorname I} \def\B{\operatorname B} \def\F{\text F} \def\sd{\operatorname {sd}} \def\sn{\operatorname {sn}} $

Here is how to find the OP’s closed form

Consider Jacobi $\sn(z,m)$, Jacobi $\sd(z,m)$, and the half period Jacobi $\cn(z,m)$ identity:

$$\cn\left(\frac23\K\left(\frac12\right),\frac12\right)= \cn\left(\frac13\K\left(\frac12\right)-\K\left(\frac12\right),\frac12\right)=\frac1{\sqrt2}\sd\left(\frac13\K\left(\frac12\right),\frac12\right)=\sqrt{\frac2{x^2+1}-1},x=\cn\left(\frac13\K\left(\frac12\right),\frac12\right)$$

and the Jacobi $\cn(z,m)$ double angle formula:

$$\cn\left(\frac23\K\left(\frac12\right),\frac12\right)=\frac{\cn^2\left(\frac13\K\left(\frac12\right),\frac12\right)-\sn^2\left(\frac13\K\left(\frac12\right),\frac12\right)\dn^2 \left(\frac13\K\left(\frac12\right),\frac12\right)}{1-\frac12 \sn^4\left(\frac13\K\left(\frac12\right),\frac12\right)}=-\frac{4x^2}{x^4-2x^2-1}-1$$

Solving for $x$:

$$-\frac{4x^2}{x^4-2x^2-1}-1= \sqrt{\frac2{x^2+1}-1}\implies x=\cn\left(\frac13\K\left(\frac12\right),\frac12\right)=\sqrt[4]{2\sqrt3-3}$$

the above method is from @Start Wearing Purple’s in this question. Now, apply a reciprocal type Jacobi $\dn(z,m)$ transformation:

$$\cn\left(\frac13\K\left(\frac12\right),\frac12\right)=\dn\left(\frac{1+i}6\K(2),2\right)\implies 1-\dn^4\left(\frac{1+i}6\K(2),2\right)=4-2\sqrt3$$

and notice inverse beta regularized in $1-\dn^4\left(\frac{1+i}2\K(2)x,2\right)=\I^{-1}_x\left(\frac12,\frac14\right)$ from section 4 of this post to get:

$$4-2\sqrt3=\I^{-1}_\frac13\left(\frac12,\frac14\right)$$

Taking the regularized beta function on both sides and converting it into an incomplete beta function gives us the closed form:

$$\I_{4-2\sqrt3}\left(\frac12,\frac14\right)=\frac13\implies \color{blue}{\B\left(\frac12,\frac14\right)-\B_{4-2\sqrt3}\left(\frac12,\frac14\right)}=\frac23\B\left(\frac12,\frac14\right)= \frac{{2\sqrt 2 {\pi ^{3/2}}}}{{3{\Gamma ^2}( {\frac{3}{4}} )}} $$


The OP’s hypergeometric function converts to an incomplete beta function:

$$2^\frac74 \sqrt[8]3 \, _2\F_1\left(\frac14,\frac34;\frac54;-\frac{\sqrt{3}}{2}\right) =(-1)^{-\frac14}\B_{-\frac{\sqrt 3}2}\left(\frac14,\frac14\right)$$

Afterwards, we apply a complementary argument and reciprocal argument identity transformation:

$$(-1)^{-\frac14}\B_{-\frac{\sqrt 3}2}\left(\frac14,\frac14\right)=(-1)^{-\frac14}\left(\B\left(\frac14,\frac14\right)-\B_{1+\frac{\sqrt3}2}\left(\frac14,\frac14\right)\right)= \color{blue}{\B\left(\frac12,\frac14\right)-\B_{4-2\sqrt3}\left(\frac12,\frac14\right)}$$

The blue expressions matches the integral, so combine them and their equalities. Therefore the lemniscate arc length constant $\text s$ appears:

$$\bbox[5px,border: 3px solid #ADD8F7]{\int_0^{\frac{\sqrt3}2}x^{-\frac34}(x+1)^{-\frac34}dx =\frac13\sqrt{\frac2\pi}\Gamma^2\left(\frac14\right)=\frac23\text s}$$

Тyma Gaidash
  • 13,576
  • This depends on many priori-theorem and properties which includes a lot of sophisticated work. Is this possible to solve it with elementary method? – MathFail Jun 29 '23 at 21:22
  • @MathFail If you look at this question about converting a hypergeometric function into a simple closed form, it requires elliptic functions. This means there is probably no “elementary method”. It would be great to see one though. – Тyma Gaidash Jun 29 '23 at 21:29
  • The one you mentioned is related to the elliptic curves. – MathFail Jun 29 '23 at 22:06
  • @TymaGaidash Thank you for your efforts. – OnTheWay Jun 30 '23 at 04:48
3

$$ \begin{align} I &:= \int_{0}^{\sqrt{3}/2}\frac{1}{x^{3/4}\left(1+x\right)^{3/4}}dx \\ &= \int_{0}^{\sqrt{3}/2}\frac{1}{x^{3/4}}\left(1-\left(-x\right)\right)^{5/4-5/4-3/4}\ _{2}F_{1}\left(\frac{5}{4}-\frac{5}{4},\frac{5}{4}-\frac{3}{4};\frac{5}{4};-x\right)dx \\ &= \int_{0}^{\sqrt{3}/2}\frac{1}{x^{3/4}}\ _{2}F_{1}\left(\frac{5}{4},\frac{3}{4};\frac{5}{4};-x\right)dx \tag{1}\\ &= \int_{0}^{\sqrt{3}/2}\frac{1}{x^{3/4}}\ _{2}F_{1}\left(\frac{1}{4}+1,\frac{3}{4};\frac{5}{4};-x\right)dx \\ &= \int_{0}^{\sqrt{3}/2}\frac{1}{x^{3/4}}\left(\frac{3/4 \cdot (-x)}{5/4}\ _{2}F_{1}\left(\frac{1}{4}+1,\frac{3}{4}+1;\frac{5}{4}+1;-x\right)+ \text{ } _{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-x\right)\right)dx \tag{2}\\ &= \int_{0}^{\sqrt{3}/2}\left(\frac{1}{x^{3/4}}\cdot \text{ }_{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-x\right)+4x^{1/4}\cdot\frac{1/4\cdot3/4}{-5/4}\ _{2}F_{1}\left(\frac{5}{4},\frac{7}{4};\frac{9}{4};-x\right)\right)dx \\ &= \int_{0}^{\sqrt{3}/2}\frac{d}{dx}4x^{1/4}\ _{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-x\right)dx \tag{3}\\ &= 4x^{1/4}\ _{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-x\right) \Bigg|_{0}^{\sqrt{3}/2} \\ &= 4\left(\frac{\sqrt{3}}{2}\right)^{1/4}\ _{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-\frac{\sqrt{3}}{2}\right)-4\left(0\right)^{1/4}\ _{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-0\right) \\ &= 2^{7/4}3^{1/8}\ _{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-\frac{\sqrt{3}}{2}\right) \end{align} $$

$(1)$ $(2)$ $(3)$

Accelerator
  • 6,203
2

This is a continuation of the answer by user MathFail and is based on my comment there.

The integral in the question equals $$I=2\int_{\theta_0-\pi/4}^{\pi/4}\frac{d\phi}{\sqrt{1-2\sin^2\phi}}\tag{1}$$ where $$\sin\theta_0=\frac{\sqrt{3}-1}{2}$$ It should be observed that $0<\theta_0<\pi/4$ and hence if we write $\beta=\pi/4-\theta_0$ then we have $0<\beta<\pi/4$ and $$I=2\int_0^{\pi/4}\frac{d\phi}{\sqrt{1-2\sin^2\phi}}+2\int_0^{\beta}\frac{d\phi}{\sqrt{1-2\sin^2\phi}} $$ Using the substitution $x=\sin\phi$ we get $$I=2\int_0^{1/\sqrt{2}}\frac{dx}{\sqrt{(1-x^2)(1-2x^2)}}+2\int_0^{\sin\beta}\frac{dx}{\sqrt{(1-x^2)(1-2x^2)}} $$ Next we put $t=\sqrt{2}x$ to get $$I=\sqrt{2}\int_0^1\frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}+\sqrt{2}\int_0^{\sqrt{2}\sin\beta}\frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} $$ where $k=1/\sqrt{2}$. Therefore we get $$I=\sqrt{2}\left(K(k)+F(\phi,k)\right)\tag{2}$$ where $$\sin\phi=\sqrt{2}\sin\beta$$ Doing the calculations one gets $$\sin\phi=\sqrt{\frac{\sqrt{3}}{2}}-\frac{\sqrt {3}}{2}+\frac{1}{2}\tag{3}$$ The above expression is (not so) well known and it is actually related to trisection formula for elliptic integrals.

Theorem (Trisection formula): If $k\in(0,1)$ and $\sin\phi=x\in(0,1)$ is a root of $$k^2x^4-2k^2x^3+2x-1=0$$ then $F(\phi, k) =K(k) /3$.

For $k=1/\sqrt{2}$ the above equation becomes $$x^4-2x^3+4x-2=0\tag{4}$$ I verified that the expression in $(3)$ is a root of above equation by first substituting $x=y+(1/2)$ and then replacing $y$ with $z-z^2$ and factoring the resulting equation in $z$ to obtain a factor $4z^4-3$ (all of it was done using web browser version of Pari GP).

To get the solution analytically we can put $x^2=1-y$ in $(4)$ and get $$((1-y)^2-2)^2=4(1-y)(-1-y)^2$$ or $$y^4+6y^2-3=0$$ so that $$y^2=2\sqrt{3}-3=\frac{\sqrt{3}}{2}(4-2\sqrt{3})$$ and then $$y=\sqrt{\frac{\sqrt{3}}{2}}(\sqrt{3}-1)$$ Let $z=\sqrt{\frac{\sqrt{3}}{2}}$ so that $$y=z(2z^2-1)$$ and $$x^2=1-y=1-2z^3+z$$ Writing $1$ and $1/4+z^4$ we get $$x^2=z^4-2z^3+z^2+(z-z^2)+\frac{1}{4}$$ or $$x=z-z^2+\frac{1}{2}$$ as desired.

And finally the integral in question equals $$I=\frac{4\sqrt{2}}{3}K(1/\sqrt{2})=\frac{\sqrt {2}\Gamma^2(1/4)}{3\sqrt {\pi}} $$ which is same as the value given in question.


The above can be understood as evaluation of values of certain elliptic functions. By definition if $u=F(\phi, k) $ then $\text{sn} (u, k) =\sin\phi$ and $\text{cn} (u, k) =\cos \phi$.

Thus in terms of elliptic functions the value $x$ in trisection formula mentioned above is $x=\text{sn} (K/3,k)$ and further it can be proved that $$\text{cn} (2K/3,k)=1-\text{sn}(K/3,k)$$ So what we have established above is that for $k=1/\sqrt{2}$ we have $$\text{sn} (K/3,k)=\frac{1}{2}+\sqrt{\frac{\sqrt{3}}{2}}-\frac{\sqrt{3}}{2}$$ and $$\text{cn} (K/3,k)=\sqrt[4]{2\sqrt{3}-3}$$ (based on value of $y^2$) and $$\text{cn} (2K/3,k)=\frac{1}{2}-\sqrt{\frac{\sqrt{3}}{2}}+\frac{\sqrt{3}}{2}$$

  • Thank you sir for spending time on this problem. I studied a new thing base on your solution. Have a nice day sir (+1). – OnTheWay Jun 10 '25 at 06:54