$$ \lim_{n\to\infty}\left(\frac{1}{n^2}+\frac{2}{n^2}+\frac{3}{n^2}+\ldots+\frac{n}{n^2}\right)$$
$$ = \lim_{n\to\infty}\left(\frac{1+2+3+\ldots+n}{n^2} \right)$$
$$ = \lim_{n\to\infty}\left(\frac{n+1}{2n} \right)=\frac {1}{2} $$
I have a question here, Can we use The limit rule like $$ \lim_{n\to\infty}[f(x)+g(x)]=\lim_{n\to\infty}f(x)+\lim_{n\to\infty}g(x)$$ to conclude:$$ \lim_{n\to\infty}\left(\frac{1}{n^2}+\frac{2}{n^2}+\frac{3}{n^2}+\ldots+\frac{n}{n^2}\right)$$$$=\lim_{n\to\infty}\frac{1}{n^2}+\lim_{n\to\infty}\frac{2}{n^2}+\lim_{n\to\infty}\frac{3}{n^2}+\ldots+\lim_{n\to\infty}\frac{n}{n^2}$$$$=0+0+\ldots+0=0$$ which is absurd. But I can't figure out where the error is. Please help me out.