Definition 2 is from the textbook of Stewart calculus
The area $A$ of the region $S$ that lies under the graph of a continuous function $f$ is the limit of the sum of the areas of approximating rectangles. $$A = \lim_{n\to\infty}R_n=\lim_{n\to\infty}[f(x_1)\Delta x+f(x_2)\Delta x+\dots+f(x_n)\Delta x]$$
When ${n\to\infty}$, we have $\Delta x\to0$, so $$A = \lim_{\Delta x\to0}R_n=\lim_{\Delta x\to0}[f(x_1)\Delta x+f(x_2)\Delta x+\dots+f(x_n)\Delta x]$$ when $\Delta x\to0$, we have $$\lim_{\Delta x\to0}f(x_1)\Delta x=\lim_{\Delta x\to0}f(x_2)\Delta x=\dots=\lim_{\Delta x\to0}f(x_n)\Delta x =0$$
Then we use Limit Rule, $$A =\lim_{\Delta x\to0}f(x_1)\Delta x+\lim_{\Delta x\to0}f(x_2)\Delta x+\dots+\lim_{\Delta x\to0}f(x_n)\Delta x=0 $$
I know the answer is wrong, but I don't know where the error is. Can someone help me out?