As noticed, the limit in this form
$$\lim_{x\to \infty}\overbrace{\left(\frac{1}{x^2} + \frac{2}{x^2} + \frac{3}{x^2} + ... + \frac{x}{x^2}\right)}^{\text{x terms}}$$
is meaningful for $x$ integer and in this case, as you noticed
$$\lim_{x\to \infty}\left(\frac{1}{x^2} + \frac{2}{x^2} + \frac{3}{x^2} + ... + \frac{x}{x^2}\right) = \lim_{x\to \infty} \left(\frac{x(x+1)}{2x^2}\right)=\frac12$$
note also that the limit in the last form
$$\lim_{x\to \infty} \left(\frac{x(x+1)}{2x^2}\right)=\frac12$$
is well defined also for $x$ real.
The apparent paradox you are referring to
$$\lim_{x\to \infty}\left(\frac{1}{x^2} + \frac{2}{x^2} + \frac{3}{x^2} + ... + \frac{x}{x^2}\right)=\lim_{x\to \infty}\frac{1}{x^2} + \lim_{x\to \infty}\frac{2}{x^2} + \lim_{x\to \infty}\frac{3}{x^2} + ... + \lim_{x\to \infty}\frac{x}{x^2} = 0$$
is due to the fact that the following rule
$$\lim_{x\to x_0} f_1(x)\cdot f_2(x)\cdot \ldots\cdot f_n(x)=\lim_{x\to x_0} f_1(x)\cdot \lim_{x\to x_0} f_2(x)\cdot \ldots\cdot \lim_{x\to x_0} f_n(x) $$
holds, under some conditions for the existence of the single limits, only for $n$ finite otherwise we face with apparent paradoxes as the one in hand.
Note also that this wrong argument in some cases works, as for example for
$$\lim_{x\to \infty}\overbrace{\left(\frac{1}{x^3} + \frac{2}{x^3} + \frac{3}{x^3} + ... + \frac{x}{x^3}\right)}^{\text{x terms}}= 0$$
but notwithstanding this, it is not correct claim that
$$\lim_{x\to \infty}\left(\frac{1}{x^3} + \frac{2}{x^3} + \frac{3}{x^3} + ... + \frac{x}{x^3}\right)=\lim_{x\to \infty}\frac{1}{x^3} + \lim_{x\to \infty}\frac{2}{x^3} + \lim_{x\to \infty}\frac{3}{x^3} + ... + \lim_{x\to \infty}\frac{x}{x^3}$$
even if it leads to a correct result in this particular case.
Then for each $k,$ $$\lim_{n\to\infty} f(n,k)=0,$$ but $1=\sum_{k=1}^\infty f(n,k)$ for any $n.$
– Thomas Andrews Jun 17 '23 at 20:06