I will state some facts first.
Suppose that $a = (a_1, a_2, a_3)$ and that $b = (b_1, b_2, b_3)$. Then
$$
a \times b
= \left(
\det {\begin{bmatrix}
a_2 & b_2 \\
a_3 & b_3 \\
\end{bmatrix}},
-\det {\begin{bmatrix}
a_1 & b_1 \\
a_3 & b_3 \\
\end{bmatrix}},
\det {\begin{bmatrix}
a_1 & b_1 \\
a_2 & b_2 \\
\end{bmatrix}}
\right),
$$
and
$$
a \cdot b = a_1 b_1 + a_2 b_2 + a_3 c_3.
$$
Lemma 1.
$$
(a \times b) \cdot (c \times d)
= \det {\begin{bmatrix}
a \cdot c & a \cdot d \\
b \cdot c & b \cdot d \\
\end{bmatrix}}.
$$
Proof.
$$
\begin{aligned}
& (a \times b) \cdot (c \times d)
\\
= {} &
\sum_{1 \leq i < j \leq 3}
{(a_i b_j - a_j b_i) (c_i d_j - c_j d_i)}
\\
= {} &
\sum_{1 \leq i < j \leq 3}
{(a_i b_j - a_j b_i) (c_i d_j - c_j d_i)}
\\
= {} &
\sum_{1 \leq i < j \leq 3}
{(a_i b_j c_i d_j + a_j b_i c_j d_i - a_i b_j c_j d_i - a_j b_i c_i d_j)}
\\
= {} &
\sum_{1 \leq i < j \leq 3}
{(a_i b_j c_i d_j + a_j b_i c_j d_i)}
-
\sum_{1 \leq i < j \leq 3}
{(a_i b_j c_j d_i + a_j b_i c_i d_j)}
\\
= {} &
\sum_{1 \leq i < j \leq 3}
{(a_i b_j c_i d_j + a_j b_i c_j d_i)}
+ \sum_{i = 1}^{3} {a_i b_i c_i d_i}
\\
& -
\sum_{1 \leq i < j \leq 3}
{(a_i b_j c_j d_i + a_j b_i c_i d_j)}
- \sum_{i = 1}^{3} {a_i b_i c_i d_i}
\\
= {} &
\sum_{1 \leq i, j \leq 3}
{a_i b_j c_i d_j}
-
\sum_{1 \leq i, j \leq 3}
{a_i b_j c_j d_i}
\\
= {} &
\sum_{i = 1}^{3} \sum_{j = 1}^{3}
{a_i b_j c_i d_j}
-
\sum_{i = 1}^{3} \sum_{j = 1}^{3}
{a_i b_j c_j d_i}
\\
= {} &
\sum_{i = 1}^{3} {a_i c_i}
\sum_{j = 1}^{3} {b_j d_j}
-
\sum_{i = 1}^{3} {a_i d_i}
\sum_{j = 1}^{3} {b_j c_j}
\\
= {} &
(a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c).
\end{aligned}
$$
Lemma 2.
$$
(a \times b) \cdot c = a \cdot (b \times c).
$$
Proof.
$$
\begin{aligned}
& (a \times b) \cdot c
\\
= {} & \det {\begin{bmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3 \\
\end{bmatrix}
}
\\
= {} & \det {\begin{bmatrix}
b_1 & c_1 & a_1 \\
b_2 & c_2 & a_2 \\
b_3 & c_3 & a_3 \\
\end{bmatrix}
}
\\
= {} & (b \times c) \cdot a
\\
= {} & a \cdot (b \times c).
\end{aligned}
$$
Theorem.
$$
(a \times b) \times c
= (c \cdot a) b - (b \cdot c) a.
$$
Proof.
For any vector $d$,
$$
((a \times b) \times c) \cdot d
= (a \times b) \cdot (c \times d),
$$
and
$$
((c \cdot a) b - (b \cdot c) a) \cdot d
= (c \cdot a)(b \cdot d) - (b \cdot c)(a \cdot d)
= (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c).
$$
By Lemma 1, we have
$$
((a \times b) \times c) \cdot d
= ((c \cdot a) b - (b \cdot c) a) \cdot d
$$
for any vector $d$, which is
$$
((a \times b) \times c - ((c \cdot a) b - (b \cdot c) a)) \cdot d
= 0
$$
for any vector $d$. Specially,
$$
((a \times b) \times c - ((c \cdot a) b - (b \cdot c) a))
\cdot
((a \times b) \times c - ((c \cdot a) b - (b \cdot c) a))
= 0.
$$
Hence we conclude that
$$
(a \times b) \times c - ((c \cdot a) b - (b \cdot c) a) = 0,
$$
which is just that
$$
(a \times b) \times c = (c \cdot a) b - (b \cdot c) a.
$$