Differentiating the integral formula $$\int_{0}^{\infty} \exp \left(-\alpha x^{2}- \frac{\beta}{4x^{2}}\right) \, \mathrm dx = \frac{\sqrt{\pi}}{2\sqrt{\alpha}} \, e^{-\sqrt{\alpha \beta}} \, , \quad (\alpha, \beta > 0)$$ with respect to the parameter $\beta$ twice, we get $$ \int_{0}^{\infty} \frac{1}{x^{4}} \, \exp \left(-\alpha x^{2}- \frac{\beta}{4x^{2}} \right) \, \mathrm dx = 2 \sqrt{\pi} \, \frac{1+\sqrt{\alpha \beta}}{ \beta^{3/2}} \, e^{-\sqrt{\alpha \beta}}.$$
(Differentiation under the integral sign is justified since for any positive $\delta < \beta$, $ \frac{1}{x^{2}}\exp \left(-\alpha x^{2}- \frac{\beta}{4x^{2}}\right) $ is dominated by the integrable function $\frac{1}{x^{2}}\exp \left(-\alpha x^{2}- \frac{\delta}{4x^{2}}\right) $, and $\frac{1}{x^{4}} \, \exp \left(-\alpha x^{2}- \frac{\beta}{4x^{2}}\right) $ is dominated by the integrable function $\frac{1}{x^{4}} \, \exp \left(-\alpha x^{2}- \frac{\delta}{4x^{2}}\right) $.)
We also have $$\begin{align} \int_{0}^{\infty} u^{2} J_{1}(ru) e^{-t^{2}u^{2}} \, \mathrm du &= \int_{0}^{\infty} u^{2} e^{-t^{2}u^{2}} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!(m+1)!} \left(\frac{ru}{2} \right)^{2m+1} \, \mathrm du \\ &= \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!(m+1)!} \left(\frac{r}{2} \right)^{2m+1} \int_{0}^{\infty} u^{2m+3} e^{-t^{2}u^{2}} \, \mathrm du \\ &= \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!(m+1)!} \left(\frac{r}{2} \right)^{2m+1} \frac{(m+1)!}{2t^{2m+4}} \\ &= \frac{r}{4t^{4}}\sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!} \left(\frac{r^{2}}{4t^{2}} \right)^{m} \\ &= \frac{r}{4t^{4}} \, \exp \left(-\frac{r^{2}}{4t^{2}} \right). \end{align}$$
Therefore,
$ \begin{align} \int_{0}^{\infty} \, \frac{u^2}{\sqrt{u^2+a^2}} \, J_1(ru) \, e^{-z \sqrt{u^{2}+a^{2}}} \, \mathrm du &= \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} u^{2} J_{1}(ru) \int_{0}^{\infty}\exp \left(-(u^{2}+a^{2})t^{2}-\frac{z^{2}}{4t^{2}} \right) \, \mathrm dt \, \mathrm du \\ &= \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \exp \left(-a^{2}t^{2}- \frac{z^{2}}{4t^{2}} \right) \int_{0}^{\infty} u^{2} J_{1}(ru) e^{-t^{2}u^{2}} \, \mathrm du \, \mathrm dt \\ &= \frac{r}{2\sqrt{\pi}} \int_{0}^{\infty} \frac{1}{t^{4}} \, \exp \left(-a^{2}t^{2} - \frac{r^{2}+z^{2}}{4t^{2}} \right) \, \mathrm dt \\ &= \frac{r}{2\sqrt{\pi}} 2 \sqrt{\pi} \, \frac{1+a\sqrt{r^{2}+z^{2}}}{(r^{2}+z^{2})^{3/2}} e^{-a\sqrt{r^{2}+z^{2}}} \\ &= r \, \frac{1+a \sqrt{r^{2}+z^{2}}}{(r^{2}+z^{2})^{3/2}} \, e^{-a \sqrt{r^{2}+z^{2}}} . \end{align}$
See page 416 in A Treatise of the Theory of Bessel Functions. For your integral, let $\mu=1$ and $\nu = 1/2$.
– Random Variable May 31 '23 at 17:20