Expanding into partial fractions yields, as you've shown,
$$S = \sum_{k=1}^\infty \frac1{(2k-1)^2(2k+1)^2} = \frac14 \sum_{k=1}^\infty \left[\underbrace{\frac1{2k+1} - \frac1{2k-1}}_{\rm telescoping} + \underbrace{\frac1{(2k+1)^2} + \frac1{(2k-1)^2}}_{S'}\right]$$
The telescoping part converges to $-1$. For the non-telescoping part, recall the power series
$$\tanh^{-1}(x) = \sum_{k=0}^\infty \frac{x^{2k+1}}{2k+1}$$
Now let
$$f(x) = \sum_{k=1}^\infty \frac{x^{2k+1}}{(2k+1)^2} \quad \text{and} \quad g(x) = \sum_{k=1}^\infty \frac{x^{2k-1}}{(2k-1)^2} = \sum_{k=0}^\infty \frac{x^{2k+1}}{(2k+1)^2} = x + f(x)$$
Differentiate with respect to $x$, multiply by $x$, apply the fundamental theorem of calculus to find $f$ and $g$, and let $x\to1$ from below to recover $S'$.
$$\begin{align*}
f'(x) = \sum_{k=1}^\infty \frac{x^{2k}}{2k+1} \implies x f'(x) &= \tanh^{-1}(x) - x \\
\implies f(x) &= f(0) + \int_0^x \frac{\tanh^{-1}(y)-y}y \, dy \\
\implies \sum_{k=1}^\infty \frac1{(2k+1)^2} &= \lim_{x\to1^-} f(x) = \int_0^1 \frac{\tanh^{-1}(y)-y}y \, dy
\end{align*}$$
Now,
$$S = \frac{S'-1}4 = - \frac12 + \frac12 \int_0^1 \frac{\tanh^{-1}(y)}y \, dy$$
Integrate by parts to write
$$\int \frac{\tanh^{-1}(y)}y \, dy = \tanh^{-1}(y) \ln(y) - \int \frac{\ln(y)}{1-y^2} \, dy$$
and consult here for methods to compute the remaining integral.