I have a differential $1$-form $\omega = x\mathrm{d}x + x\mathrm{d}y$ and I need to find its Lie derivative along $X = (x+y)\partial_{x} - 2y\partial_{y}$. The first approach is by using Cartan identity: \begin{multline} \imath_{X} \omega = x\mathrm{d}x\left((x+y)\partial_{x} - 2y\partial_{y}\right) + x\mathrm{d}y\left((x+y)\partial_{x} - 2y\partial_{y}\right) = \\ = x(x + y) - 2xy = x^2-xy; \end{multline} \begin{equation} \mathrm{d}(\imath_{X}\omega) = \mathrm{d}\left(x^{2} - xy\right) = 2x\mathrm{d}x - y\mathrm{d}x - x\mathrm{dy} = (2x - y)\mathrm{d}x - x\mathrm{d}y \end{equation} Next \begin{equation} \mathrm{d}\omega = \mathrm{d}x\wedge\mathrm{d}x + \mathrm{d}x\wedge\mathrm{d}y = \mathrm{d}x\wedge\mathrm{d}y; \end{equation} \begin{multline} \imath_{X}(\mathrm{d}\omega) = \imath_{X}(\mathrm{d}x\otimes\mathrm{d}y - \mathrm{d}y\otimes\mathrm{d}x) = \\ = \mathrm{d}x((x+y)\partial_{x} -2y\partial_{y})\mathrm{d}y - \mathrm{d}y((x+y)\partial_{x} -2y\partial_{y})\mathrm{d}x = \\ = (x+y)\mathrm{d}y + 2y\mathrm{d}x \end{multline} Finally, using the Cartan identity \begin{multline} \mathfrak{L}_{X}\omega = \mathrm{d}(\imath_{X}\omega) + \imath_{X}(\mathrm{d} \omega) = (2x - y)\mathrm{d}x - x\mathrm{d}y + (x + y)\mathrm{d}y + 2y\mathrm{d}x = \\ = (2x + y)\mathrm{d}y + y\mathrm{d}y \end{multline} However I’d like to find it using flow definition. As I understand the flow could be found in this manner \begin{gather} \begin{cases}\dot{x} = x + y\\ \dot{y} = -2y\end{cases}\\ \begin{pmatrix}x(t)\\ y(t)\end{pmatrix} = \begin{pmatrix}e^{t} & \frac{e^{t}- e^{-2t}}{3}\\ 0 & e^{-2t}\end{pmatrix}\begin{pmatrix}x(0) \\ y(0)\end{pmatrix} \end{gather} Therefore, flow is \begin{equation} \Phi^{t}(x_{0},y_{0}) = \begin{pmatrix}e^{t} & \frac{e^{t}- e^{-2t}}{3}\\ 0 & e^{-2t}\end{pmatrix} \end{equation}
From here I don’t quite understand how to find a pullback lift $h^{t}(x,y)$ and Lie derivative from here, using definition \begin{equation} \mathfrak{L}_{X}\omega = \lim_{t\to 0} \frac{h^{t}_{(x,y)}(\omega(\Phi^{t}(x,y))) - \omega(x,y)}{t} \end{equation}
And the last thing: is this a correct formula \begin{equation} \mathfrak{L}_{X}\omega = \left(X^{j}\frac{\omega_{i}}{\partial{x}_{j}} + \omega_{j}\frac{\partial X^{i}}{\partial x_{j}}\right)\mathrm{d}x^{i}? \end{equation} As I understand it is a coordinate representation of Cartan identity. I saw it here, however there are some troubles in upper and lower indexes in it and it does not give a correct answer for my example.