Let $\alpha$ be a one-form and $X$ a vector field. For example take:
\begin{align*} \alpha &= y^2 dx + x^2 dy\\ &\\ X &= \frac{\partial}{\partial x}+xy \frac{\partial}{\partial y}. \end{align*}
I'm trying to understand how the Lie derivative works on concrete examples. In particular I want to apply the formula:
$$\mathcal{L}_X\alpha = \left(X^j\frac{\partial \alpha_i}{\partial \phi^j} + \alpha_j \frac{\partial X^j}{\partial \phi^i}\right)d\phi^i.$$
If I understand the definitions correctly, it should be:
\begin{align*} \mathcal{L}_X\alpha =&\ \left(1\frac{\partial y^2}{\partial x} + y^2 \frac{\partial 1}{\partial x}\right)dx +\left(xy\frac{\partial y^2}{\partial y} + x^2 \frac{\partial xy}{\partial x} \right)dx\\ &\ +\left(1\frac{\partial x^2}{\partial x} + y^2 \frac{\partial 1}{\partial y}\right)dy + \left(xy\frac{\partial x^2}{\partial y} + x^2 \frac{\partial xy}{\partial y}\right)dy\\ =&\ (0+0)dx+(2xy^2+x^2y)dx+(2x+0)dy+(0+x^3)dy\\ =&\ (2xy^2+x^2y)dx+(2x+x^3)dy. \end{align*}
Is this correct at all?
If not, I'd appreaciate any tip or hint as to what I'm doing wrong.