Instead of proving that those three are concurrent, we prove that $OG$ bisects $FS$ (at the point $A$).
Note that $O$ is the circumcenter of the $18-$gon.
Let's assume $\angle FOA =x$.
We have:
$$1=\frac {OG}{FG} \times\frac {BG}{OG} \times \frac {FG}{BG} \\ =\frac {\sin \angle OFG}{\sin x} \times \frac{\sin \angle GOB}{ \sin \angle OBC} \times \frac{\sin \angle CBF}{\sin \angle GFB} \\ = \frac{ \sin 30^{\circ}}{\sin x} \times \frac{\sin (40^{\circ} -x)}{\sin 50^{\circ}} \times \frac{\sin 20^{\circ}}{\sin 40^{\circ}} \\ \implies \frac{\sin (40^{\circ} -x)}{\sin x}=\frac { 2\sin 50^{\circ} \sin 40^{\circ}}{\sin 20^{\circ}} \\ =\frac{\cos 10^{\circ}}{\sin 20^{\circ}} \\ \implies \frac{\sin (40^{\circ} -x)}{\sin x}= \frac{\frac{1}{2}}{\sin 10^{\circ}}=\frac{\sin (40^{\circ} -10^{\circ})}{\sin 10^{\circ}} \\ \implies x=10^{\circ}.$$
On the other hand, $\triangle FOS$ is an isosceles triangle, and $\angle FOS =20^{\circ}.$ Hence, we are done.
