0

Given a short exact sequence of abelian groups, \begin{eqnarray} 0\rightarrow A\xrightarrow{h}B\xrightarrow{k}C\rightarrow0, \end{eqnarray} we tensor it with an arbitrary abelian group $G$. How to prove (in an elementary way starting from definitions) the following sequence is exact: \begin{eqnarray} A\otimes G\xrightarrow{h\otimes 1}B\otimes G\xrightarrow{k\otimes 1}C\otimes G\rightarrow0, \end{eqnarray} where the leftmost zero inclusion has been discarded.

wormram
  • 3,202
Smart Yao
  • 584

0 Answers0