How do I show that $[\nabla_{\mu}, \nabla_{\nu}]w_\lambda = -R^{\rho}_{\lambda \mu \nu} w_{\rho}$, given that $[\nabla_{\mu}, \nabla_{\nu}]V^\lambda = R^{\rho}_{\lambda \mu \nu} V^{\rho}$?
I have attempted to solve this by using the fact that $[\nabla_{\mu}, \nabla_{\nu}]f = 0$ for any scalar $f$, and then applying this to $V^{\lambda}w_{\lambda}$, since this contracts to a scalar.
This is currently what I've got so far,
$ 0 = \nabla_{\mu} \nabla_{\nu} (V^{\lambda} w_{\lambda}) - \nabla_{\nu} \nabla_{\mu} (V^\lambda w_\lambda) \\ = \nabla_{\mu} [(\nabla_\nu V^\lambda) w_\lambda + V^\lambda (\nabla_\nu w_\lambda)] - \nabla_nu [(\nabla_\mu V^\lambda)w_\lambda + V^\lambda (\nabla_\mu w_\lambda)] \\ = (\nabla _\mu \nabla _\nu V^\lambda) w_\lambda + (\nabla_\nu V^\lambda) (\nabla_\mu w_\lambda) + (\nabla_\mu V^\lambda)(\nabla_\nu w_\lambda) + V^\lambda (\nabla_\mu \nabla_\nu w^\lambda ) - (\nabla_\nu \nabla_\mu V^\lambda) w_\lambda - (\nabla_\mu V^\lambda)(\nabla_\nu w_\lambda) -(\nabla_\nu V^\lambda)(\nabla_\mu w_\lambda) - V^\lambda (\nabla_\nu \nabla_\mu w_\lambda) \\= ([\nabla_\mu, \nabla_\nu]V^\lambda)w_\lambda +V^\lambda [\nabla_\mu, \nabla_\nu]w_\lambda \\= R^\lambda_{\rho \mu \nu} V^{\rho}w_\lambda + V^\lambda[\nabla_\mu, \nabla_\nu]w_\lambda \\ \Rightarrow V^\lambda [\nabla_\mu, \nabla_\nu]w_\lambda = - R^\lambda_{\rho \mu \nu} V^\rho w_\lambda$
Is this correct? If so, how do I 'factor' out the $V$ to get the result?