This will be an experimental integral with the final result using the Kampé de Fériet function with the goal integrals being: $$\int \cos\left(\csc^2(x)\right)dx,\int\sin\left(\csc^2(x)\right)dx\implies \int e^{ i\csc^2(x)}dx=\int\cos\left(\csc^2(x)\right)+i\sin\left(\csc^2(x) \right)dx $$ which already is related to
Here is the method that will be used with term by term integration and a Gauss Hypergeometric function with 2 constant arguments: $$\int e^{i\csc^2(x)}dx=\int \sum_{n=0}^\infty \frac{i^n \csc^{2n}(x)}{n!}dx=\sum_{n=0}^\infty\frac{i^n}{n!}\int\csc^{2n}(x)dx=C-\sum_{n=0}^\infty \frac{i^n}{n!}\cos(x)\sin^2(x)^{n+\frac12}\csc^{2n+1}(x)\,_2\text F_1\left(\frac12,n+\frac12,\frac32,\cos^2(x) \right)$$ Next let’s expand the hypergeometric function as seen in the corresponding bolded link using the Pochhammer Symbol function. Let’s also switch the indices so that we can use the Kampé de Fériet bolded link’s formula more easily:
$$C-\sum_{m=0}^\infty \frac{i^m}{m!}\cos(x)\sin^2(x)^{m+\frac12}\csc^{2m+1}(x)\,_2\text F_1\left(\frac12,m+\frac12,\frac32,\cos^2(x) \right)=C-\cos(x)\sum_{m=0}^\infty \frac{i^m}{m!}\sin^2(x)^{m+\frac12}\csc^{2m+1}(x)\sum_{n=0}^\infty\frac{\left(\frac12\right)_n\left(m+\frac12\right)_n \cos^{2n}(x)}{\left(\frac32\right)_nn!}= C-\cos(x)\sum_{m=0}^\infty \frac{i^m}{m!}\sin^2(x)^{m+\frac12}\csc^{2m+1}(x)\sum_{n=0}^\infty\frac{\left(m+\frac12\right)_n \cos^{2n}(x)}{(2n+1)n!}$$
Now let’s combine sums and leave the Pochhammer Symbols alone until later steps. Let’s not “simplify” because this would constrict the domain:
$$C-\cos(x)\sum_{m=0}^\infty\sum_{n=0}^\infty \frac{i^m}{m!}\sin^2(x)^{m+\frac12}\csc^{2m+1}(x)\frac{\left(\frac12\right)_n\left(m+\frac12\right)_n \cos^{2n}(x)}{\left(\frac32\right)_nn!}= C-\sqrt{\sin^2(x)}\cot(x)\sum_{m=0}^\infty\sum_{n=0}^\infty\frac{\left(\frac12\right)_n\left(m+\frac12\right)_n (i\csc^2(x)\sin^2(x))^m\cos^{2n}(x)}{\left(\frac32\right)_nm!n!} $$
There is a problem as the $\left(m+\frac12\right)_n$ cannot use the Kampé de Fériet function, so we need to do the following:
$$\left(m+\frac12\right)_n =\frac{\Gamma\left(m+n+\frac12\right)}{\Gamma\left(m+\frac12\right)}= \frac{\Gamma\left(m+n+\frac12\right)}{\Gamma\left(m+\frac12\right)} \frac{\Gamma\left(\frac12\right)}{\Gamma\left(\frac12\right)}=\frac{\left(\frac12\right)_{m+n}}{\left(\frac12\right)_m}$$
Therefore:
$$ C-\sqrt{\sin^2(x)}\cot(x)\sum_{m=0}^\infty\sum_{n=0}^\infty\frac{\left(\frac12\right)_n\left(m+\frac12\right)_n (i\csc^2(x)\sin^2(x))^m\cos^{2n}(x)}{\left(\frac32\right)_nm!n!}= C-\sqrt{\sin^2(x)}\cot(x)\sum_{m=0}^\infty\sum_{n=0}^\infty\frac{\left(\frac12\right)_{m+n}\left(\frac12\right)_n(i\csc^2(x)\sin^2(x))^m\cos^{2n}(x)}{\left(\frac12\right)_m\left(\frac32\right)_nm!n!} $$
When the Kampé de Fériet function is defined as:
$$\text F^{p,r,u}_{q,s,v}\left(^{a_1,…,a_p;c_1,…,c_r;f_1,…,f_u}_{b_1,…,b_q;d_1,…,d_s;g_1,…,g_v}\ x,y\right)\mathop=^\text{def}\sum_{m=0}^\infty\sum_{n=0}^\infty\frac{\prod\limits_{j=1}^p(a_j)_{m+n} \prod\limits_{j=1}^r(c_j)_m \prod\limits_{j=1}^u (f_j)_n x^my^n}{\prod\limits_{j=1}^q (b_j)_{m+n} \prod\limits_{j=1}^s(d_j)_m \prod\limits_{j=1}^v(g_j)_n m!n!}$$
Therefore:
$$\int e^{ i\csc^2(x)}dx=C-\sqrt{\sin^2(x)}\cot(x)\sum_{m=0}^\infty\sum_{n=0}^\infty\frac{\left(\frac12\right)_{m+n}\left(\frac12\right)_n(i\csc^2(x)\sin^2(x))^m\cos^{2n}(x)}{\left(\frac12\right)_m\left(\frac32\right)_nm!n!}= C-\sqrt{\sin^2(x)}\cot(x)\text F^{1,0,1}_{0,1,1}\left(^{\frac12;;\frac12}_{;\frac12;\frac32}\ i\csc^2(x)\sin^2(x),\cos^2(x)\right) $$
which is a closed form in terms of a fairly common hypergeometric function and sign function. The problem is that this function only has $p,q,r,s,u,v$ values of $0,1$, so we can probably simplify the Kampé de Fériet function in terms of simpler functions like how with the following Normalized Fresnel Integral functions:
$$\int_0^\pi \cos(\csc^2(x))dx=\pi\left(1-\text C\left(\sqrt{\frac2\pi}\right)- \text S\left(\sqrt{\frac2\pi}\right)\right)=0.09655932…:$$
or
$$\int_0^\pi \sin(\csc^2(x))dx=\pi\left(\text C\left(\sqrt{\frac2\pi}\right)- \text S\left(\sqrt{\frac2\pi}\right)\right)=1.48957873…:$$
which can also be written in terms of Error functions. So how can we write
$$\int e^{i\csc^2(x)}dx=\int \cos\left(\csc^2(x) \right)dx+i\int \sin\left(\csc^2(x) \right)dx= C-\sqrt{\sin^2(x)}\cot(x)\text F^{1,0,1}_{0,1,1}\left(^{\frac12;;\frac12}_{;\frac12;\frac32}\ i\csc^2(x)\sin^2(x),\cos^2(x)\right)\mathop=^{0\ne x\in\Bbb R} C-\text{sgn}(\sin(x))\cos(x)\text F^{1,0,1}_{0,1,1}\left(^{\frac12;-;\frac12}_{-;\frac12;\frac32}\ i,\cos^2(x)\right) $$
in another closed form via less general functions? A solution verification is also requested. Please correct me and give me feedback!



