I want to show $$ \operatorname{tr} \nabla^2_{X,~\cdot} h(\cdot, W)= -(\nabla \delta h)(X,W) $$ where $X,W$ are tangent vector fields on Riemannian manifold. And $$ \nabla^2_{X,Y} = \nabla _X \nabla_Y - \nabla _{\nabla_XY} \\ \delta:\Gamma(\otimes^k T^* M) \rightarrow \Gamma(\otimes^{k-1} T^* M),~~~~ \delta(T)= -\operatorname{tr}_{12} (\nabla T). $$
What I try: $$ \operatorname{tr} \nabla^2_{X,~\cdot} h(\cdot, W) = g^{ij}\nabla ^2_{X, \partial_i} h(\partial_j, W) \tag{1} $$ Besides \begin{align} -(\nabla\delta h)(X,W)&= [\nabla_X(\operatorname{tr}_{12}(\nabla h))] W \\ &=[\nabla_X (g^{ij} \nabla h(\partial_i, \partial_j, \cdot))]W \\ &=g^{ij} \nabla_X[\nabla h(\partial_i, \partial_j, \cdot)] W \\ &= g^{ij}[\nabla_X\nabla_{\partial_i } h(\partial_j, \cdot)- \nabla_{\nabla_X\partial_i } h(\partial_j, \cdot) - \nabla_{\partial_i } h(\nabla_X\partial_j, \cdot) ] W\\ &=g^{ij}\nabla^2_{X, \partial_i} h(\partial_j, W) - \nabla_{\partial_i } h(\nabla_X\partial_j, W) \tag{2} \end{align} Obviously, (2) is not equal to (1). How should I do?