Unfortunately, this expression is not solvable in terms of the Lambert W function.
But for example,
the Halley's method
can be effectively used
to iteratively find the approximation of the root.
\begin{align}
x_{n+1}&=F(x_n)
,\\
F(x)&=x-\frac{2\,f(x)\,f'(x)}{2f'(x)^2-f(x)\,f''(x)}
,
\end{align}
where
\begin{align}
f(x)&=x^2+x-\exp(-x)
\quad\text{(the root would be $-x$)}
,\\
f'(x)&=2x+1+\exp(-x)
,\\
f''(x)&=2-\exp(-x)
.
\end{align}
For example, starting with $x_0=0$, we get
\begin{align}
x_1&=0.444444444444444444444444444444\\
x_2&=0.444130228824893210739571781394\\
x_3&=0.444130228823966590585466329491\\
x_4&=0.444130228823966590585466329491
,
\end{align}
so we get pretty good approximation of the root of the original equation as
$-0.444130228823966590585466329491$.
Here is the python code:
import decimal
decimal.getcontext().prec = 30
lg2 = decimal.Decimal(2).log10()
def f(x):
return x*x+x-decimal.Decimal(-x).exp()
def df(x):
return x+x+1+decimal.Decimal(-x).exp()
def ddf(x):
return 2-decimal.Decimal(-x).exp()
def F(x):
fx=f(x)
dfx=df(x)
ddfx=ddf(x)
return x-2fxdfx/(2dfx2-fxddfx)
x=0
x=F(x); print(x)
x=F(x); print(x)
x=F(x); print(x)
x=F(x); print(x)
0.444444444444444444444444444444
0.444130228824893210739571781394
0.444130228823966590585466329491
0.444130228823966590585466329491