According to the alternating series test a general term $b_n$ in the sum: $\sum\limits_{n=1}^{\infty}(-1)^{n+1}b_n$ should converge to zero: $\lim\limits_{n \rightarrow \infty} b_n = 0$
From reuns answer here we get such an alternating series with a quantity that should converge to zero:
$$\lim_{n\to\infty}b_n=\sum_{n=2}^{\infty}\sum_{\substack{a_1,a_2,\dots,a_k\geqslant 2\\a_1 a_2\cdots a_k= n<2^{k+1}}}\frac{\log(a_1)}{n^{1/2}\log^{3+\epsilon}(n)}=0$$
Is the sum above equal to zero?
I have the feeling there is something boldly wrong with this question because I have been editing the words several times before posting. What I am hoping for is that such a question/sum is undecidable in a Gödel sense because it involves a product of an infinite number of variables $$a_1 a_2 a_3 \cdots a_{k}$$ at the same time as the variable $n$ goes to $\infty$.
Edit 14.6.2021:
(*Mathematica start*)
"Part 3 start:"
Clear[a1, a2, a3, a3, a4];
Monitor[Sum[If[1 == n, ""[n], 0], {n, 2^0, 2^1 - 1}], n]
Monitor[Sum[
Sum[If[a1 == n, ""[n], 0], {a1, 2, n}], {n, 2^1, 2^2 - 1}], n]
Monitor[Sum[
Sum[Sum[If[a1*a2 == n, ""[n], 0], {a1, 2, n}], {a2, 2, n}], {n, 2^2,
2^3 - 1}], n]
Monitor[Sum[
Sum[Sum[Sum[If[a1*a2*a3 == n, ""[n], 0], {a1, 2, n}], {a2, 2,
n}], {a3, 2, n}], {n, 2^3, 2^4 - 1}], n]
Monitor[Sum[
Sum[Sum[Sum[
Sum[If[a1*a2*a3*a4 == n, ""[n], 0], {a1, 2, n}], {a2, 2,
n}], {a3, 2, n}], {a4, 2, n}], {n, 2^4, 2^5 - 1}], n]
"Part 3 end."
(*Mathematica end*)
gives:
""[1]
""[2] + ""[3]
""[4] + 2 ""[6]
""[8] + 3 ""[12]
""[16] + 4 ""[24]
which appears to be:
TableForm[Table[""[2^n] + n ""[3*2^(n - 1)], {n, 0, 4}]]
Edit 14.6.2021 later:
(*Mathematica start*)"Part 4 start:"
Clear[a1, a2, a3, a3, a4];
Monitor[Sum[If[1 == n, 1/(""[n]), 0], {n, 2^0, 2^1 - 1}], n]
Monitor[Sum[
Sum[If[a1 == n, ""[a1]/(""[n]), 0], {a1, 2, n}], {n, 2^1,
2^2 - 1}], n]
Monitor[Sum[
Sum[Sum[If[a1*a2 == n, ""[a1]/(""[n]), 0], {a1, 2, n}], {a2, 2,
n}], {n, 2^2, 2^3 - 1}], n]
Monitor[Sum[
Sum[Sum[Sum[If[a1*a2*a3 == n, ""[a1]/(""[n]), 0], {a1, 2, n}], {a2,
2, n}], {a3, 2, n}], {n, 2^3, 2^4 - 1}], n]
Monitor[Sum[
Sum[Sum[Sum[
Sum[If[a1*a2*a3*a4 == n, ""[a1]/(""[n]), 0], {a1, 2, n}], {a2, 2,
n}], {a3, 2, n}], {a4, 2, n}], {n, 2^4, 2^5 - 1}], n]
"Part 4 end."
(*Mathematica end*)
"Part 4 start:"
1/""[1]
2
""[2]/""[4] + ""[2]/""[6] + ""[3]/""[6]
""[2]/""[8] + (2 ""[2])/""[12] + ""[3]/""[12]
""[2]/""[16] + (3 ""[2])/""[24] + ""[3]/""[24]
"Part 4 end."