17

I am having troubles with this problem.

Translation:

A metric $d$ on a continuum is called convex if for any two points $p$ and $q$ of $X$ there is a point $x\in X$ such that $d(p,x)=\frac12d(p,q)=d(q,x)$. Prove that if the metric on $X$ is convex, then the balls are connected, and $X$ is locally connected.

Once the balls shown that the balls are connected, the following implication comes for free.

My idea is to suppose that there are $x_0\in X$ and $\epsilon_0>0$ such that $B(x_0,\epsilon_0)=\{x\in X:d(x,x_0)<\epsilon_0\}$ is not connected. Then there are $U$ and $V$, open, disjoint, and non-empty, such that $B(x_0,\epsilon_0)=U\cup V$.

The next part is complicated to write, but the idea is to construct a Cauchy sequence in $B(x_0,\epsilon_0)$, and since we’re in a compactum it will converge to some element of $X$, which will in fact be in the boundary of $B(x_0,\epsilon_0)$.

To do this we suppose without loss of generality that $x_0\in U$. Let $x_1\in V$. Since $d$ is convex there is an $x_2\in X$ such that $d(x_0,x_2)=\frac12d(x_0,x_1)=d(x_1,x_2)$. Then $x_2\in U\cup V$ (since $d(x_0,x_2)<d(x_0,x_1)<\epsilon_0$).

If $x_2\in U$, then we look at $x_1\in V$, $x_2\in U$, and there is an $x_3\in X$ such that $d(x_1,x_3)=\frac12d(x_1,x_2)=d(x_2,x_3)$. (Again we see that $x_3\in B(x_0,\epsilon_0)$ and moreover $d(x_0,x_3)<\frac12\epsilon_0$.)

If $x_2\in V$, then we look at $x_0\in U$, $x_2\in V$, and there is an $x_3\in X$ such that $d(x_0,x_3)=\frac12d(x_0,x_2)=d(x_2,x_3)$. (Again we see that $x_3\in B(x_0,\epsilon_0)$ and moreover $d(x_0,x_3)<\frac12\epsilon_0$.)

I hope that the construction of the sequence $(x_n)$ is understood. According to me one can prove that we will have satisfied the following two conditions:

i) $d(x_n,x_{n+1})<\frac1{2^n}\epsilon_0$ for all $n$ (so it will be Cauchy)

ii) $d(x_0,x_n)<\frac12\epsilon_0$ for all $n$

Then on the one hand we have $(x_n)\to x$ for some $x\in X$. Then $x\in\operatorname{bdry}B(x_0,\epsilon_0)$. But on the other hand $d(x_0,x)\le d(x_0,x_n)+d(x_n,x)<\frac12\epsilon_0+\frac12\epsilon_0=\epsilon_0$ for each $n\ge k$ for some $k\in \mathbb{N}$. Then $x\in B(x_0,\epsilon_0)$, which is a contradiction. Therefore the open balls are connected, and therefore $X$ is locally connected.

I don’t actually know whether this proof is okay or if there is another easier way. I hope you can help. Thank you.


"Una métrica $d$ en un continuo se llama convexa si para cualesquiera 2 puntos p y q de X, existe un punto $x\in X$ tal que $d(p,x)=\frac{1}{2}d(p,q) =d(q,x)$. Prueba que si la métrica para X es convexa, entonces las bolas son conexas y entonces X es localmente conexa."

Una vez teniendo lo de que las bolas son conexas, la siguiente implicación viene de regalo. Ahora, mi idea es suponer que existe $x_{0} \in X$ y $\epsilon _{0} >0$ talque $B(x_{0},\epsilon _{0})=\left\{ x\in X : d(x,x_{0})<\epsilon_{0} \right\}$ no es conexa. Entonces existen U y V abiertos, ajenos, no vacíos tales que $B(x_{0},\epsilon _{0})=U\cup V$. La siguiente parte es complicada de escribir, pero la idea es construir una sucesión de Cauchy en $B(x_{0},\epsilon _{0})$ y como estamos en un compacto ésta va a converger a algún elemento de X, que de hecho estará en la frontera de $B(x_{0},\epsilon _{0})$. Para hacer esto, supongamos, sin pérdida de generalidad, que $x_{0}\in U$. Sea $x_{1}\in V$, como d es convexa existe $x_2\in X$ tal que $d(x_{0},x_{2})=\frac{1}{2}d(x_{0},x_{1}) =d(x_{1},x_{2})$, entonces (haciendo cuentitas $x_{2}\in B(x_{0},\epsilon _{0})$) entonces $x_{2}\in U\cup V$.

Si $x_{2}\in U$ entonces nos fijamos en $x_{1}\in V,x_{2}\in U$ entonces, existe $x_{3}\in X$ talque $d(x_{1},x_{3})=\frac{1}{2}d(x_{1},x_{2}) =d(x_{2},x_{3})$. (de nuevo haciendo cuentas podemos llegar a que $x_{3}\in B(x_{0},\epsilon _{0})$ pero además $d(x_{0}, x_{3})< \frac{1}{2} \epsilon_{0}$.

Si $x_{2}\in V$ entonces nos fijamos en $x_{0}\in U,x_{2}\in V$ entonces, existe $x_{3}\in X$ talque $d(x_{0},x_{3})=\frac{1}{2}d(x_{0},x_{2}) =d(x_{2},x_{3})$. (de nuevo haciendo cuentas podemos llegar a que $x_{3}\in B(x_{0},\epsilon _{0})$ pero además $d(x_{0}, x_{3})< \frac{1}{2} \epsilon_{0}$.

Espero, que se entienda cómo va a ser la construcción de la sucesión $(x_{n})$ Según yo, se puede probar que así construida vamos a tener las siguientes dos condiciones:

i)$d(x_{n},x_{n+1})< \frac{1}{2^{n}}\epsilon_{0} \forall n$ (por lo tanto va a ser de Cauchy)

ii) $d(x_{0},x_{n})< \frac{1}{2}\epsilon_{0} \forall n$

Entonces, por un lado tenemos que $(x_{n}) \longrightarrow x$ para algún $x\in X$. Entonces $x\in Fr(B(x_{0},\epsilon _{0}))$. Pero por otro lado $d(x_{0}, x)\le d(x_{0}, x_{n})+d(x_{n},x)< \frac{1}{2}\epsilon_{0} + \frac{1}{2}\epsilon_{0}= \epsilon_{0}$ $\forall n\ge k$ para alguna $k\in \mathbb{N}$. Entonces $x\in B(x_{0},\epsilon _{0})$ lo cual es una contradicción. Por lo tanto las bolas abiertas son conexas y por lo tanto X es localmente conexo.

La verdad no se si esta demostración esté bien o si hay otra forma más sencilla. Espero me puedan ayudar. Gracias.


Nicole
  • 189
  • 5
    Can you translate it to English? This is an English based site, and the vast majority of users here speak English...there's also the translation request tag if you have difficulty translating it to English. – rurouniwallace Jun 06 '13 at 13:50
  • 4
    I’ve added a tentative translation. I don’t actually read Spanish, so a more fluent speaker should check my translation. – Brian M. Scott Jun 06 '13 at 21:39
  • Although at glance, the translation doesn't look bad. @BrianM.Scott Good job! – Pedro Jun 06 '13 at 21:39
  • 1
    I have edited to put the translation on top. I am very disappointed that this got downvoted. – Pedro Jun 06 '13 at 21:42
  • 7
    Two downvotes? Unbelievable. – Pedro Jun 06 '13 at 21:44
  • 1
    @Peter: I agree. Even if one reads no Spanish at all, the format of the original post makes it pretty obvious that Nicole was stating the problem and then giving a great deal her own work. I consider that worth an upvote even when the post isn’t in English, but at the very least it ought to compensate for the non-English post. – Brian M. Scott Jun 06 '13 at 22:00
  • @PeterTamaroff Me too. If I recall correctly the output of the language discussion on meta was that it's ok to ask in whatever language and that it's up to the community to answer such questions (just as with any other question) and or translate it. There plenty of kind people who will do it. – leo Jun 06 '13 at 22:05
  • Un continuo es un espacio métrico compacto? – leo Jun 06 '13 at 22:31
  • @leo: ‘En topología, un continuo es un espacio topológico conexo y compacto.’ From Spanish Wikipedia. – Brian M. Scott Jun 06 '13 at 22:35
  • @BrianM.Scott thanks. What I'm having trouble with is that in order for this argument to work, it's enough to assume that the ball has at least two points (which is a consequence of being disconnected), that is, the proof is ok but can be simplified. Am I missing something? – leo Jun 06 '13 at 22:40
  • @leo: I’ve not had time to take a close look. While working on the translation I thought that it wasn’t clear that $d(x_0,x_3)<\frac12\epsilon_0$ in the $x_2\in U$ case. I don’t see what simplification you have in mind. – Brian M. Scott Jun 06 '13 at 22:45
  • @BrianM.Scott you are right it's no clear. – leo Jun 06 '13 at 22:58
  • This fact (even the definition of convex metrics) is due to Karl Menger (from 1928), the seminal paper (in German) can be downloaded at http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002272644&IDDOC=29350 – Henno Brandsma Jun 07 '13 at 06:05
  • Thanks for the translation. – Nicole Jun 07 '13 at 15:48

1 Answers1

2

Your proof is basically correct, the following is a cleaner way to argue.

Definition. A metric space $X$ is called geodesic if for every pair of points $p, q\in X$ there exists an isometric (i.e. distance-preserving) map $f=f_{p,q}: [0,D]\to X$ so that $f(0)=p, f(D)=q$, where $D=d(p,q)$. Since such $f$ is 1-Lipschitz, it is also continuous.

Lemma 1. if $X$ is a geodesic metric space then metric balls in $X$ are path-connected.

Proof. If $q\in B(p,R)$ (ball of radius $R$ centered at $p$), then the image of the geodesic $f_{p,q}$ connecting $p$ to $q$ is clearly contained in $B(p,R)$. qed

Lemma 2. If $X$ is a complete convex metric space, then $X$ is a geodesic metric space.

Proof. Take a pair of points $p, q\in X$ within distance $D$. Consider the interval $I=[0,D]$ and the subset $E\subset I$ consisting of numbers of the form $rD$, where $r$ is a dyadic rational number (a rational number whose denominator is a power of $2$). In other words, $$ E=\bigcup_{n\ge 0} E_n, $$ where $E_n$ consists of numbers of the form $\frac{m}{2^n}D$, where $m, 2^n$ are coprime.

Define a map $f$ from $E$ to $X$ inductively by:

  1. $f(0)=p, f(D)=q$.

  2. If $f$ is defined on $E_i, i\le n$, we extend $f$ to $E_{n+1}$ by the rule: If $t, s$ are consecutive elements of $$ \bigcup_{k\le n} E_k $$ then $$ f(\frac{t+s}{2}) $$ is a midpoint of $f(t)$ and $f(s)$. This midpoint need not be unique, but that's OK.

Then it is not hard to verify (using just the triangle inequality) by induction on $n$ that $f: E\to X$ is an isometric map. Hence, $f$ is 1-Lipschitz; thus it is uniformly continuous and, therefore, extends to a continuous map $f: I\to X$ (here we use completeness of $X$). By continuity, the resulting map $f: I\to X$ is again isometric. qed

Combination of Lemmas 1 and 2 imply that metric balls in a convex complete metric space are path-connected. Local connectivity immediately follows.

Moishe Kohan
  • 111,854
  • Is there any way to prove it without using choice? – YuiTo Cheng Jul 30 '19 at 23:58
  • @YuiToCheng: My proof does not use the Axiom of Choice. – Moishe Kohan Jul 31 '19 at 00:05
  • How do you choose midpoints in a deterministic way? – YuiTo Cheng Jul 31 '19 at 00:28
  • @YuiToCheng: This has nothing to do with Axiom of Choice. Axiom of choice is about forming a set by selecting for each $i\in I$ a point $x_i$ from a set $X_i$. The deterministic requirement is a common misconception regarding AC. – Moishe Kohan Jul 31 '19 at 01:56
  • No. The existence of a choice function is equivalent to the existence of a choice set. Your proof implicitly invokes a choice function (as you have mentioned, midpoints are not unique). – YuiTo Cheng Jul 31 '19 at 01:59