Let $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi}\, \mathfrak{g}_\alpha$ be a complex semisimple Lie algebra, where $\mathfrak{g}_{\alpha}=\mathbb{C} \cdot e_\alpha$ is 1-dimensional. Moreover, let $\Delta \subseteq \Phi^+$ be a set of simple roots. It is known, that $\mathfrak{g}=\langle \, h_i,e_i,f_i \,| \, \alpha_i \in \Delta \, \rangle$, where $e_i=e_{\alpha_i}$, $f_i=e_{-\alpha_i}$ and $h_i=[e_i,f_i]$.
Let $\alpha = \sum_{\alpha_i \in \Delta} \,n_i \alpha_i \in \Phi^+$. How can we express $e_\alpha$ in terms of $e_i$'s?