$\color{brown}{\textbf{Parametrization.}}$
Searching the given polynomial's representation in the form of
$$P(a,b,x) =(a+2p)(x^6+t^6)+p(x^2+t^2)^3-3px^2(x^2+t^2)^2 + 2bx^3,\tag1$$
easily to get
$$ax^6 -3pt^2 x^4 + 2b x^3 + (3p+a) t^6=ax^6+(a+1)x^4+2bx^3-b^2,$$
$$t^2=-\dfrac{a+1}{3p},\tag2$$
$$\quad (3p+a)(a+1)^3=27b^2p^3,\quad p^3=\dfrac{c^2}4(3p+a),$$
where
$$c= \dfrac2b\sqrt{\dfrac{(a+1)^3}{27}}.\tag3$$
Then
$$4\left(\dfrac pc\right)^3-3\,\dfrac pc = \dfrac ac.$$
Taking in account identities
$$4s^3-3s = \cos(3\arccos s),$$
one can obtain
$$p=c\cos\left(\dfrac23k\pi+\dfrac13\arccos\dfrac ac\right),\tag4$$
where $\;k\in\{-1,0,1\}\;$ provides the real positive result.
$\color{brown}{\textbf{Substitution.}}$
Assume
$$y=x+\dfrac {t^2}x,\tag5$$
then
$$x^3+\dfrac{t^6}{x^3}=\left(x+\dfrac {t^2}x\right)^3-3t^2\left(x+\dfrac {t^2}x\right)=y^3-3t^2y,$$
Therefore, the given polynomial $(1)$ presented in the form of
$$P(a,b,x) = x^3Q\left(a,b,x-\dfrac{a+1}{3px}\right),\tag6$$
where
$$Q(a,b,y) = (a+3p)y^3-3py^2+(a+2p)\dfrac{a+1}p y+2b.\tag7$$
Therefore, the given polynomial is reduced the cubic polynomial of the general form with the known constant cofficients.
$\color{brown}{\textbf{Example.}}$
Let $\;a=7,b=5,\;$ then $\;c\approx1.741\,859\,372\,646,\;
p\approx2.172\,466\,644\,575.\;$
Then WA gives $\;y\approx-0.227\,483\,364\,391,\;$ with the right root
$\;x_1\approx 1.000\,000\,000\,000.\;$
$\color{brown}{\textbf{Conclusions.}}$
From $(2)-(7)$ should the next:
- The roots of the given polynomial are solvable in the closed form via elementary functions;
- Identity $\;P\left(a,b,-\dfrac{a+1}{3px}\right)=-\dfrac{(a+1)^6}{(3px)^6}P\left(a,b,x\right)\;$ defines the correspondence between the values on the positive and negative arguments.