We are going to need a few results to answer this question.
Definition The probability generating function (PGF) of a random variable $X$ with support $\mathbb{N}_0 = \{0, 1, 2, \cdots\}$ is defined as $g_X(s) = \mathbb{E}[s^X]$.
Fact 1 By definition,
\begin{align*}
g_X(s) = \sum_{k=0}^{\infty} \mathbb{P}(X = k)s^k
\end{align*}
Fact 2 We have
\begin{align*}
H_X(s) \overset{\text{def}}{=}\frac{1-g_X(s)}{1-s} = \sum_{k=0}^\infty\mathbb{P}(X > k)s^k
\end{align*}
Fact 3 We have
\begin{align*}
\mathbb{P}(X \in k\mathbb{Z}) = \frac{1}{k}\sum_{j=0}^{k-1}g_X(\omega_{k,j})
\end{align*}
where $\omega_{k,j} = \exp\left(\frac{2j\pi \mathbf{i}}{k}\right)$ are the $k$th roots of unity, with $\mathbf{i}$ being the imaginary unit.
Now we can attack this problem. First, note that
\begin{align*}
\mathbb{P}(N > n) = \mathbb{P}\left(\sum_{k=1}^{n}X_k < 1\right) = \frac{1}{n!}
\end{align*}
Since the probability corresponds to finding the volume of an $n$-dimensional right tetrahedron with leg side lengths 1. So we have
\begin{align*}
H_N(s) = \sum_{k=0}^{\infty}\mathbb{P}(N > k)s^k = e^s
\end{align*}
And therefore $g_N(s) = 1 - (1-s)H_N(s) = 1 - (1-s)e^s$. We can now see that
\begin{align*}
\mathbb{P}(N \in 2\mathbb{Z}) &= \frac{1 + g_N(-1)}{2} = 1 - e^{-1} \approx 0.6321 \\
\mathbb{P}(N \in 3\mathbb{Z}) &= \frac{1 + g_N(\exp(2\pi \mathbf{i}/3)) + g_N(\exp(4\pi \mathbf{i}/3))}{3} = 1 - \frac{\sin\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3e}} - \frac{\cos\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{e}} \approx 0.3403 \\
\mathbb{P}(N \in 4\mathbb{Z}) &= \frac{1 + g_N(\mathbf{i}) + g_N(-1) + g_N(-\mathbf{i})}{4} = 1 - \frac{1}{2}e^{-1} - \frac{\sin(1)}{2} - \frac{\cos(1)}{2}\approx 0.1252 \\
&\vdots
\end{align*}
and so on. For expected values, we use the formula that
\begin{align*}
\mathbb{E}[N|N \in k\mathbb{Z}] = \frac{\sum_{n \in k\mathbb{N}_0}n \mathbb{P}(N = n)}{\mathbb{P}(N \in k\mathbb{Z})}
\end{align*}
Define
\begin{align*}
L_N(s) = \sum_{n = 0}^\infty n \mathbb{P}(N = n) s^n
\end{align*}
Note that $L_N(s) = s \frac{d}{ds} g_N(s) = s^2 e^s$ and
\begin{align*}
\sum_{n \in k\mathbb{N}_0}n \mathbb{P}(N = n) = \frac{1}{k} \sum_{j=0}^{k-1} L_N(\omega_{k,j})
\end{align*}
Plugging in these values, we have
\begin{align*}
\mathbb{E}[N|N \in 2\mathbb{Z}] &= \frac{\frac{1}{2}(e^1 + e^{-1})}{1 - e^{-1}} \approx 2.44 \\
\mathbb{E}[N|N \in 3\mathbb{Z}] &= \frac{\frac{e}{3} + \frac{2 \sin(\frac{\sqrt{3}}{2} - \frac{\pi}{6})}{3\sqrt{e}}}{1 - \frac{\sin\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3e}} - \frac{\cos\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{e}}} \approx 3.06 \\
\mathbb{E}[N|N \in 4\mathbb{Z}] &= \frac{\frac{1}{4}e^{-1} + \frac{1}{4}e - \frac{\cos(1)}{2}}{1 - \frac{1}{2}e^{-1} - \frac{\sin(1)}{2} - \frac{\cos(1)}{2}} \approx 4.0055
\end{align*}
and so on.
Challenge Do the same thing to compute $\text{Var}(N|N \in k \mathbb{Z})$.