Here is my attempt at showing this collection forms a basis. Have I done all the necessary cases? Is this correct?
Problem:We construct a topological space. Let $\mathbb{R}_{+00}$ be the set consisting of $\mathbb{R}_+$ together with two points called $0'$ and $0''$. Put a topology on it generated by a basis consisting of all intervals in $\mathbb{R}_+$ of the form $(a,b)$ or else of the form $(0,b) \cup \{0'\}$ or $(0,b) \cup \{0''\}$, $a,b \in \mathbb{R}_+$. Show this collection of sets forms a basis for a topology.
Attempt: Each point in $\mathbb{R}_{+00}$ is in at least one basis element. If $x \in \mathbb{R_+}$,the basis element $(0,x+1) \cup \{0'\}$ certainly contains $x$. $0' \in (0,b) \cup \{0'\}$ for any $b \in \mathbb{R_+}$ and $0'' \in (0,b) \cup \{0''\}$ for any $b \in \mathbb{R_+}$. The intersection of any two open intervals $(a,b),(c,d),a,b,c,d \in \mathbb{R_+},a<b,c<d$ is either $\varnothing$, or a basis element. If $a<b$ and $x \in ((0,a) \cup \{0'\}) \cap ((0,b) \cup \{0''\})$, choose $\epsilon$ such that $0<\epsilon<x$. Then $x\in (x-\epsilon,a) \subset ((0,a) \cup \{0'\}) \cap ((0,b) \cup \{0''\})$. The case where $b>a$ is similar. $(c,d) \cap ((0,a) \cup \{0'\})$ is either $\varnothing$ or an open interval of the form $(e,f)$, a basis element. Similarly for $(c,d) \cap ((0,a) \cup \{0''\}).$